skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Whitham Modulation Theory and Two-Phase Instabilities for Generalized Nonlinear Schrödinger Equations with Full Dispersion
The generalized nonlinear Schr\"odinger equation with full dispersion (FDNLS) is considered in the semiclassical regime. The Whitham modulation equations are obtained for the FDNLS equation with general linear dispersion and a generalized, local nonlinearity. Assuming the existence of a four-parameter family of two-phase solutions, a multiple-scales approach yields a system of four independent, first-order, quasi-linear conservation laws of hydrodynamic type that correspond to the slow evolution of the two wavenumbers, mass, and momentum of modulated periodic traveling waves. The modulation equations are further analyzed in the dispersionless and weakly nonlinear regimes. The ill-posedness of the dispersionless equations corresponds to the classical criterion for modulational instability (MI). For modulations of linear waves, ill-posedness coincides with the generalized MI criterion, recently identified by Amiranashvili and Tobisch [New J. Phys., 21 (2019), 033029]. A new instability index is identified by the transition from real to complex characteristics for the weakly nonlinear modulation equations. This instability is associated with long wavelength modulations of nonlinear two-phase wavetrains and can exist even when the corresponding one-phase wavetrain is stable according to the generalized MI criterion. Another interpretation is that while infinitesimal perturbations of a periodic wave may not grow, small but finite amplitude perturbations may grow, hence this index identifies a nonlinear instability mechanism for one-phase waves. Classifications of instability indices for multiple FDNLS equations with higher-order dispersion, including applications to finite-depth water waves and the discrete NLS equation, are presented and compared with direct numerical simulations.  more » « less
Award ID(s):
2306319
PAR ID:
10521657
Author(s) / Creator(s):
; ;
Publisher / Repository:
SIAM Journal of Applied Mathematics
Date Published:
Journal Name:
SIAM Journal on Applied Mathematics
Volume:
84
Issue:
4
ISSN:
0036-1399
Page Range / eLocation ID:
1337 to 1361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Whitham equation was proposed as a model for surface water waves that combines the quadratic flux nonlinearityof the Korteweg–de Vries equation and the full linear dispersion relationof unidirectional gravity water waves in suitably scaled variables. This paper proposes and analyzes a generalization of Whitham's model to unidirectional nonlinear wave equations consisting of a general nonlinear flux functionand a general linear dispersion relation. Assuming the existence of periodic traveling wave solutions to this generalized Whitham equation, their slow modulations are studied in the context of Whitham modulation theory. A multiple scales calculation yields the modulation equations, a system of three conservation laws that describe the slow evolution of the periodic traveling wave's wavenumber, amplitude, and mean. In the weakly nonlinear limit, explicit, simple criteria in terms of generalandestablishing the strict hyperbolicity and genuine nonlinearity of the modulation equations are determined. This result is interpreted as a generalized Lighthill–Whitham criterion for modulational instability. 
    more » « less
  2. Abstract We derive the Whitham modulation equations for the Zakharov–Kuznetsov equation via a multiple scales expansion and averaging two conservation laws over one oscillation period of its periodic traveling wave solutions. We then use the Whitham modulation equations to study the transverse stability of the periodic traveling wave solutions. We find that all periodic solutions traveling along the first spatial coordinate are linearly unstable with respect to purely transversal perturbations, and we obtain an explicit expression for the growth rate of perturbations in the long wave limit. We validate these predictions by linearizing the equation around its periodic solutions and solving the resulting eigenvalue problem numerically. We also calculate the growth rate of the solitary waves analytically. The predictions of Whitham modulation theory are in excellent agreement with both of these approaches. Finally, we generalize the stability analysis to periodic waves traveling in arbitrary directions and to perturbations that are not purely transversal, and we determine the resulting domains of stability and instability. 
    more » « less
  3. Conduits generated by the buoyant dynamics between two miscible Stokes fluids with high viscosity contrast, a type of core–annular flow, exhibit a rich nonlinear wave dynamics. However, little is known about the fundamental wave dispersion properties of the medium. In the present work, a pump is used to inject a time-periodic flow that results in the excitation of propagating small- and large-amplitude periodic travelling waves along the conduit interface. This wavemaker problem is used as a means to measure the linear and nonlinear dispersion relations and corresponding periodic travelling wave profiles. Measurements are favourably compared with predictions from a fully nonlinear, long-wave model (the conduit equation) and the analytically computed linear dispersion relation for two-Stokes flow. A critical frequency is observed, marking the threshold between propagating and non-propagating (spatially decaying) waves. Measurements of wave profiles and the wavenumber–frequency dispersion relation quantitatively agree with wave solutions of the conduit equation. An upshift from the conduit equation's predicted critical frequency is observed and is explained by incorporating a weak recirculating flow into the full two-Stokes flow model. When the boundary condition corresponds to the temporal profile of a nonlinear periodic travelling wave solution of the conduit equation, weakly nonlinear and strongly nonlinear, cnoidal-type waves are observed that quantitatively agree with the conduit nonlinear dispersion relation and wave profiles. This wavemaker problem is an important precursor to the experimental investigation of more general boundary value problems in viscous fluid conduit nonlinear wave dynamics. 
    more » « less
  4. Wave-particle interaction plays a crucial role in the dynamics of the Earth’s radiation belts. Cyclotron resonance between coherent whistler mode electromagnetic waves and energetic electrons of the radiation belts is often called a coherent instability. Coherent instability leads to wave amplification/generation and particle acceleration/scattering. The effect of wave on particle’s distribution function is a key component of the instability. In general, whistler wave amplitude can grow over threshold of quasi-linear (linear) diffusion theory which analytically tracks the time-evolution of a particle distribution. Thus, a numerical approach is required to model the nonlinear wave induced perturbations on particle distribution function. A backward test particle model is used to determine the energetic electrons phase space dynamics as a result of coherent whistler wave instability. The results show the formation of a phase space features with much higher resolution than is available with forward scattering models. In the nonlinear regime the formation of electron phase space holes upstream of a monochromatic wave is observed. The results validate the nonlinear phase trapping mechanism that drives nonlinear whistler mode growth. The key differences in phase-space perturbations between the linear and nonlinear scenarios are also illustrated. For the linearized equations or for low (below threshold) wave amplitudes in the nonlinear case, there is no formation of a phase-space hole and both models show features that can be characterized as linear striations or ripples in phase-space. 
    more » « less
  5. Abstract Whitham modulation equations are derived for the nonlinear Schrödinger equation in the plane ((2+1)‐dimensional nonlinear Schrödinger [2d NLS]) with small dispersion. The modulation equations are obtained in terms of both physical and Riemann‐type variables; the latter yields equations of hydrodynamic type. The complete 2d NLS Whitham system consists of six dynamical equations in evolutionary form and two constraints. As an application, we determine the linear stability of one‐dimensional traveling waves. In both the elliptic and hyperbolic cases, the traveling waves are found to be unstable. This result is consistent with previous investigations of stability by other methods and is supported by direct numerical calculations. 
    more » « less