skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural thyroid hormone metabolism integrates seasonal changes in environmental temperature with the neuroendocrine reproductive axis
We asked if environmental temperature alters thyroid hormone metabolism within the hypothalamus, thereby providing a neuroendocrine mechanism by which temperature could be integrated with photoperiod to regulate seasonal rhythms. We used immunohistochemistry to assess the effects of low-temperature winter dormancy at 4 °C or 12 °C on thyroid-stimulating hormone (TSH) within the infundibulum of the pituitary as well as deiodinase 2 (Dio2) and 3 (Dio3) within the hypothalamus of red-sided garter snakes (Thamnophis sirtalis). Both the duration and, in males, magnitude of low-temperature dormancy altered deiodinase immunoreactivity within the hypothalamus, increasing the area of Dio2-immunoreactivity in males and females and decreasing the number of Dio3-immunoreactive cells in males after 8–16 weeks. Reciprocal changes in Dio2/3 favor the accumulation of triiodothyronine within the hypothalamus. Whether TSH mediates these effects requires further study, as significant changes in TSH-immunoreactive cell number were not observed. Temporal changes in deiodinase immunoreactivity coincided with an increase in the proportion of males exhibiting courtship behavior as well as changes in the temporal pattern of courtship behavior after emergence. Our findings mirror those of previous studies, in which males require low-temperature exposure for at least 8 weeks before significant changes in gonadotropin-releasing hormone immunoreactivity and sex steroid hormones are observed. Collectively, these data provide evidence that the neuroendocrine pathway regulating the reproductive axis via thyroid hormone metabolism is capable of transducing temperature information. Because all vertebrates can potentially use temperature as a supplementary cue, these results are broadly applicable to understanding how environment–organism interactions mediate seasonally adaptive responses.  more » « less
Award ID(s):
2212957 1755427
PAR ID:
10521706
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Hormones and behavior
Volume:
161
Issue:
C
ISSN:
0018-506X
Page Range / eLocation ID:
105517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For many animal species, vocal communication is a critical social behavior and often a necessary component of reproductive success. Additionally, vocalizations are often demanding motor acts. Wanting to know whether a specific molecular toolkit might be required for vocalization, we used RNA‐sequencing to investigate neural gene expression underlying the performance of an extreme vocal behavior, the courtship hum of the plainfin midshipman fish (Porichthys notatus). Single hums can last up to 2 h and may be repeated throughout an evening of courtship activity. We asked whether vocal behavioral states are associated with specific gene expression signatures in key brain regions that regulate vocalization by comparing transcript expression levels in humming versus non‐humming males. We find that the circadian‐related genesperiod3andClockare significantly upregulated in the vocal motor nucleus and preoptic area‐anterior hypothalamus, respectively, in humming compared with non‐humming males, indicating that internal circadian clocks may differ between these divergent behavioral states. In addition, we identify suites of differentially expressed genes related to synaptic transmission, ion channels and transport, neuropeptide and hormone signaling, and metabolism and antioxidant activity that together may support the neural and energetic demands of humming behavior. Comparisons of transcript expression across regions stress regional differences in brain gene expression, while also showing coordinated gene regulation in the vocal motor circuit in preparation for courtship behavior. These results underscore the role of differential gene expression in shifts between behavioral states, in this case neuroendocrine, motor and circadian control of courtship vocalization. 
    more » « less
  2. Abstract Galanin is a peptide that regulates pituitary hormone release, feeding, and reproductive and parental care behaviors. In teleost fish, increased galanin expression is associated with territorial, reproductively active males. Prior transcriptome studies of the plainfin midshipman (Porichthys notatus), a highly vocal teleost fish with two male morphs that follow alternative reproductive tactics, show that galanin is upregulated in the preoptic area‐anterior hypothalamus (POA‐AH) of nest‐holding, courting type I males during spawning compared to cuckolding type II males. Here, we investigate possible differences in galanin immunoreactivity in the brain of both male morphs and females with a focus on vocal‐acoustic and neuroendocrine networks. We find that females differ dramatically from both male morphs in the number of galanin‐expressing somata and in the distribution of fibers, especially in brainstem vocal‐acoustic nuclei and other sensory integration sites that also differ, though less extensively, between the male morphs. Double labeling shows that primarily separate populations of POA‐AH neurons express galanin and the nonapeptides arginine‐vasotocin or isotocin, homologues of mammalian arginine vasopressin and oxytocin that are broadly implicated in neural mechanisms of vertebrate social behavior including morph‐specific actions on vocal neurophysiology in midshipman. Finally, we report a small population of POA‐AH neurons that coexpress galanin and the neurotransmitter γ‐aminobutyric acid. Together, the results indicate that galanin neurons in midshipman fish likely modulate brain activity at a broad scale, including targeted effects on vocal motor, sensory and neuroendocrine systems; are unique from nonapeptide‐expressing populations; and play a role in male‐specific behaviors. 
    more » « less
  3. Protrusile jaws are a highly useful innovation that has been linked to extensive diversification in fish feeding ecology. Jaw protrusion can enhance the performance of multiple functions, such as suction production and capturing elusive prey. Identifying the developmental factors that alter protrusion ability will improve our understanding of fish diversification. In the zebrafish protrusion arises postmetamorphosis. Fish metamorphosis typically includes significant changes in trophic morphology, accompanies a shift in feeding niche and coincides with increased thyroid hormone production. We tested whether thyroid hormone affects the development of zebrafish feeding mechanics. We found that it affected all developmental stages examined, but that effects were most pronounced after metamorphosis. Thyroid hormone levels affected the development of jaw morphology, feeding mechanics, shape variation, and cranial ossification. Adult zebrafish utilize protrusile jaws, but an absence of thyroid hormone impaired development of the premaxillary bone, which is critical to jaw protrusion. Premaxillae from early juvenile zebrafish and hypothyroid adult zebrafish resemble those from adults in the generaDanionella, Devario, andMicrodevariothat show little to no jaw protrusion. Our findings suggest that evolutionary changes in how the developing skulls of danionin minnows respond to thyroid hormone may have promoted diversification into different feeding niches. 
    more » « less
  4. Ramaswami, Mani (Ed.)
    Abstract Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function. 
    more » « less
  5. Abstract: We have previously found that the physiology of the blood-brain barrier (BBB) plays an important role in the regulation of male courtship behavior. Recently, we have shown that the nuclear hormone receptor Hr46 (Hormone receptor-like in 46) is required in the BBB of adult males for normal courtship in Drosophila melanogaster (Lama et al. 2022). Hr46 is well-characterized in development, where it is induced by the hormone Ecdysone and is a major mediator of the Ecdysone response. Using a reporter construct, we have found that Ecdysone is present in the BBB; however, nothing is known about its potential roles in these cells. Since, Hr46 is a major mediator of Ecdysone signaling; we hypothesize that Ecdysone is required in the BBB in the regulation of male courtship behavior. To test our hypothesis, we are using several different strategies to examine the role of Ecdysone and Ecdysone effectors in the BBB for courtship. These include the knockdown of the Ecdysone receptor (EcR) in mature males and lowering the levels of Ecdysone in the BBB by overexpressing an Ecdysone degrading enzyme. We are also testing the role of alternative Ecdysone effectors like DopEcR and an Ecdysone transporter in the BBB. 
    more » « less