skip to main content


This content will become publicly available on June 1, 2025

Title: Mycorrhizal fungi modify decomposition: a meta‐analysis
Summary

It has been proposed that ectomycorrhizal fungi can reduce decomposition while arbuscular mycorrhizal fungi may enhance it. These phenomena are known as the ‘Gadgil effect’ and ‘priming effect’, respectively. However, it is unclear which one predominates globally.

We evaluated whether mycorrhizal fungi decrease or increase decomposition, and identified conditions that mediate this effect. We obtained decomposition data from 43 studies (97 trials) conducted in field or laboratory settings that controlled the access of mycorrhizal fungi to substrates colonized by saprotrophs.

Across studies, mycorrhizal fungi promoted decomposition of different substrates by 6.7% overall by favoring the priming effect over the Gadgil effect. However, we observed significant variation among studies. The substrate C : N ratio and absolute latitude influenced the effect of mycorrhizal fungi on decomposition and contributed to the variation. Specifically, mycorrhizal fungi increased decomposition at low substrate C : N and absolute latitude, but there was no discernable effect at high values. Unexpectedly, the effect of mycorrhizal fungi was not influenced by the mycorrhizal type.

Our findings challenge previous assumptions about the universality of the Gadgil effect but highlight the potential of mycorrhizal fungi to negatively influence soil carbon storage by promoting the priming effect.

 
more » « less
Award ID(s):
2308342
PAR ID:
10521731
Author(s) / Creator(s):
;
Publisher / Repository:
New Phytologist
Date Published:
Journal Name:
New Phytologist
Volume:
242
Issue:
6
ISSN:
0028-646X
Page Range / eLocation ID:
2763 to 2774
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Ecosystems with ectomycorrhizal plants have high soil carbon : nitrogen ratios, but it is not clear why. The Gadgil effect, where competition between ectomycorrhizal and saprotrophic fungi for nitrogen slows litter decomposition, may increase soil carbon. However, experimental evidence for the Gadgil effect is equivocal.

    Here, we apply resource‐ratio theory to assess whether interguild fungal competition for different forms of organic nitrogen can affect litter decomposition. We focus on variation in resource input ratios and fungal resource use traits, and evaluate our model's predictions by synthesizing prior experimental literature examining ectomycorrhizal effects on litter decomposition.

    In our model, resource input ratios determined whether ectomycorrhizal fungi suppressed saprotrophic fungi. Recalcitrant litter inputs favored the former over the latter, allowing the Gadgil effect only when such inputs predominated. Although ectomycorrhizal fungi did not always hamper litter decomposition, ectomycorrhizal nitrogen uptake always increased carbon : nitrogen ratios in litter.

    Our meta‐analysis of empirical studies supports our theoretical results: ectomycorrhizal fungi appear to slow decomposition of leaf litter only in forests where litter inputs are highly recalcitrant. We thus find that the specific contribution of the Gadgil effect to high soil carbon : nitrogen ratios in ectomycorrhizal ecosystems may be smaller than predicted previously.

     
    more » « less
  2. Summary

    Interactions between symbiotic ectomycorrhizal (EM) and free‐living saprotrophs can result in significant deceleration of leaf litter decomposition. While this phenomenon is widely cited, its generality remains unclear, as both the direction and magnitude of EM fungal effects on leaf litter decomposition have been shown to vary among studies.

    Here we explicitly examine how contrasting leaf litter types and EM fungal communities may lead to differential effects on carbon (C) and nitrogen (N) cycling. Specifically, we measured the response of soil nutrient cycling, litter decay rates, litter chemistry and fungal community structure to the reduction of EM fungi (via trenching) with a reciprocal litter transplant experiment in adjacentPinus‐ orQuercus‐dominated sites.

    We found clear evidence of EM fungal suppression of C and N cycling in thePinus‐dominated site, but no suppression in theQuercus‐dominated site. Additionally, in thePinus‐dominated site, only thePinuslitter decay rates were decelerated by EM fungi and were associated with decoupling of litter C and N cycling.

    Our results support the hypothesis that EM fungi can decelerate C cycling via N competition, but strongly suggest that the ‘Gadgil effect’ is dependent on both substrate quality and EM fungal community composition. We argue that understanding tree host traits as well as EM fungal functional diversity is critical to a more mechanistic understanding of how EM fungi mediate forest soil biogeochemical cycling.

     
    more » « less
  3. Summary

    Leaf decomposition varies widely across temperate forests, shaped by factors like litter quality, climate, soil properties, and decomposers, but forest heterogeneity may mask local tree influences on decomposition and litter‐associated microbiomes. We used a 24‐yr‐old common garden forest to quantify local soil conditioning impacts on decomposition and litter microbiology.

    We introduced leaf litter bags from 10 tree species (5 arbuscular mycorrhizal; 5 ectomycorrhizal) to soil plots conditioned by all 10 species in a full‐factorial design. After 6 months, we assessed litter mass loss, C/N content, and bacterial and fungal composition. We hypothesized that (1) decomposition and litter‐associated microbiome composition would be primarily shaped by the mycorrhizal type oflitter‐producing trees, but (2) modified significantly by underlying soil, based on mycorrhizal type of theconditioning trees.

    Decomposition and, to a lesser extent, litter‐associated microbiome composition, were primarily influenced by the mycorrhizal type of litter‐producing trees. Interestingly, however, underlying soils had a significant secondary influence, driven mainly by tree species, not mycorrhizal type. This secondary influence was strongest under trees from the Pinaceae.

    Temperate trees can locally influence underlying soil to alter decomposition and litter‐associated microbiology. Understanding the strength of this effect will help predict biogeochemical responses to forest compositional change.

     
    more » « less
  4. Summary

    Arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) produce contrasting plant–soil feedbacks, but how these feedbacks are constrained by lithology is poorly understood.

    We investigated the hypothesis that lithological drivers of soil fertility filter plant resource economic strategies in ways that influence the relative fitness of trees with AMF or EMF symbioses in a Bornean rain forest containing species with both mycorrhizal strategies.

    Using forest inventory data on 1245 tree species, we found that although AMF‐hosting trees had greater relative dominance on all soil types, with declining lithological soil fertility EMF‐hosting trees became more dominant. Data on 13 leaf traits and wood density for a total of 150 species showed that variation was almost always associated with soil type, whereas for six leaf traits (structural properties; carbon, nitrogen, phosphorus ratios, nitrogen isotopes), variation was also associated with mycorrhizal strategy. EMF‐hosting species had slower leaf economics than AMF‐hosts, demonstrating the central role of mycorrhizal symbiosis in plant resource economies.

    At the global scale, climate has been shown to shape forest mycorrhizal composition, but here we show that in communities it depends on soil lithology, suggesting scale‐dependent abiotic factors influence feedbacks underlying the relative fitness of different mycorrhizal strategies.

     
    more » « less
  5. Abstract

    Identifying the primary controls of particulate (POM) and mineral‐associated organic matter (MAOM) content in soils is critical for determining future stocks of soil carbon (C) and nitrogen (N) across the globe. However, drivers of these soil organic matter fractions are likely to vary among ecosystems in response to climate, soil type and the composition of local biological communities.

    We tested how soil factors, climate and plant–fungal associations influenced the distribution and concentrations of C and N in MAOM and POM in seven temperate forests in the National Ecological Observatory Network (NEON) across the eastern United States. Samples of upper mineral horizon soil within each forest were collected in plots representing a gradient of dominant tree–mycorrhizal association, allowing us to test how plant and microbial communities influenced POM and MAOM across sites differing in climate and soil conditions.

    We found that concentrations of C and N in soil organic matter were primarily driven by soil mineralogy, but the relative abundance of MAOM versus POM C was strongly linked to plot‐level mycorrhizal dominance. Furthermore, the effect of dominant tree mycorrhizal type on the distribution of N among POM and MAOM fractions was sensitive to local climate: in cooler sites, an increasing proportion of ectomycorrhizal‐associated trees was associated with lower proportions of N in MAOM, but in warmer sites, we found the reverse. As an indicator of soil carbon age, we measured radiocarbon in the MAOM fraction but found that within and across sites, Δ14C was unrelated to mycorrhizal dominance, climate, or soil factors, suggesting that additional site‐specific factors may be primary determinants of long‐term SOM persistence.

    Synthesis. Our results indicate that while soil mineralogy primarily controls SOM C and N concentrations, the distribution of SOM among density fractions depends on the composition of vegetation and microbial communities, with these effects varying across sites with distinct climates. We also suggest that within biomes, the age of mineral‐associated soil carbon is not clearly linked to the factors that control concentrations of MAOM C and N.

     
    more » « less