Abstract Urbanization is a persistent and widespread driver of global environmental change, potentially shaping evolutionary processes due to genetic drift and reduced gene flow in cities induced by habitat fragmentation and small population sizes. We tested this prediction for the eastern grey squirrel (Sciurus carolinensis), a common and conspicuous forest‐dwelling rodent, by obtaining 44K SNPs using reduced representation sequencing (ddRAD) for 403 individuals sampled across the species' native range in eastern North America. We observed moderate levels of genetic diversity, low levels of inbreeding, and only a modest signal of isolation‐by‐distance. Clustering and migration analyses show that estimated levels of migration and genetic connectivity were higher than expected across cities and forested areas, specifically within the eastern portion of the species' range dominated by urbanization, and genetic connectivity was less than expected within the western range where the landscape is fragmented by agriculture. Landscape genetic methods revealed greater gene flow among individual squirrels in forested regions, which likely provide abundant food and shelter for squirrels. Although gene flow appears to be higher in areas with more tree cover, only slight discontinuities in gene flow suggest eastern grey squirrels have maintained connected populations across urban areas in all but the most heavily fragmented agricultural landscapes. Our results suggest urbanization shapes biological evolution in wildlife species depending strongly on the composition and habitability of the landscape matrix surrounding urban areas. 
                        more » 
                        « less   
                    
                            
                            City divided: Unveiling family ties and genetic structuring of coyotes in Seattle
                        
                    
    
            Abstract Linear barriers pose significant challenges for wildlife gene flow, impacting species persistence, adaptation, and evolution. While numerous studies have examined the effects of linear barriers (e.g., fences and roadways) on partitioning urban and non‐urban areas, understanding their influence on gene flow within cities remains limited. Here, we investigated the impact of linear barriers on coyote (Canis latrans) population structure in Seattle, Washington, where major barriers (i.e., interstate highways and bodies of water) divide the city into distinct quadrants. Just under 1000 scats were collected to obtain genetic data between January 2021 and December 2022, allowing us to identify 73 individual coyotes. Notably, private allele analysis underscored limited interbreeding among quadrants. When comparing one quadrant to each other, there were up to 16 private alleles within a single quadrant, representing nearly 22% of the population allelic diversity. Our analysis revealed weak isolation by distance, and despite being a highly mobile species, genetic structuring was apparent between quadrants even with extremely short geographic distance between individual coyotes, implying that Interstate 5 and the Ship Canal act as major barriers. This study uses coyotes as a model species for understanding urban gene flow and its consequences in cities, a crucial component for bolstering conservation of rarer species and developing wildlife friendly cities. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2223973
- PAR ID:
- 10521834
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 33
- Issue:
- 14
- ISSN:
- 0962-1083
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Urbanisation is occurring globally, leading to dramatic environmental changes that are altering the ecology and evolution of species. In particular, the expansion of human infrastructure and the loss and fragmentation of natural habitats in cities is predicted to increase genetic drift and reduce gene flow by reducing the size and connectivity of populations. Alternatively, the ‘urban facilitation model’ suggests that some species will have greater gene flow into and within cities leading to higher diversity and lower differentiation in urban populations. These alternative hypotheses have not been contrasted across multiple cities. Here, we used the genomic data from the GLobal Urban Evolution project (GLUE), to study the effects of urbanisation on non‐adaptive evolutionary processes of white clover (Trifolium repens) at a global scale. We found that white clover populations presented high genetic diversity and no evidence of reducedNelinked to urbanisation. On the contrary, we found that urban populations were less likely to experience a recent decrease in effective population size than rural ones. In addition, we found little genetic structure among populations both globally and between urban and rural populations, which showed extensive gene flow between habitats. Interestingly, white clover displayed overall higher gene flow within urban areas than within rural habitats. Our study provides the largest comprehensive test of the demographic effects of urbanisation. Our results contrast with the common perception that heavily altered and fragmented urban environments will reduce the effective population size and genetic diversity of populations and contribute to their isolation.more » « less
- 
            Neighborhood ethnicity is related to mammal occupancy and activity across a desert metropolitan areaAbstract Cities support abundant human and wildlife populations that are shaped indirectly and directly by human decisions, often resulting in unequal access to environmental services and accessible open spaces. Urban land cover drives biodiversity patterns across metropolitan areas, but at smaller scales that matter to local residents, neighborhood socio‐cultural factors can influence the presence and abundance of wildlife. Neighborhood income is associated with plant and animal diversity in some cities, but the influence of other social variables is less well understood, especially across desert ecosystems. We explored wildlife distribution across gradients of neighborhood ethnicity in addition to income and landscape characteristics within residential areas of metropolitan Phoenix, Arizona, USA. Utilizing data from 38 wildlife cameras deployed in public parks and undeveloped open spaces within or near suburban neighborhoods, we estimated occupancy and activity patterns of common mammal species, including species native to the Sonoran Desert (coyote [Canis latrans] and desert cottontail rabbit [Sylvilagus audubonii]), and non‐native domestic cat (Felis catus). Neighborhood ethnicity (percentage of Latino residents) appeared to exhibit a negative relationship with occupancy for coyotes and cottontail rabbits. Additionally, daily activity patterns of coyotes occurred later in the evenings and mornings in neighborhoods with higher proportions of Latino residents, but activity was unaffected by differences in neighborhood income. This study is one of the first to show that social‐ecological mechanisms associated with patterns of neighborhood ethnicity as well as income may help to shape wildlife distribution in cities. These findings have implications for equitable management and provisioning of ecosystem services for urban residents and highlight the importance of considering a range of social covariates to better understand biodiversity outcomes in urban and urbanizing areas.more » « less
- 
            Abstract In the past decade, studies have demonstrated that urban and nonurban wildlife populations exhibit differences in foraging behavior and diet. However, little is known about how environmental heterogeneity shapes dietary variation of organisms within cities. We examined the vertebrate prey components of diets of coyotes (Canis latrans) in San Francisco to quantify territory‐ and individual‐level dietary differences and determine how within‐city variation in land cover and land use affects coyote diet. We genotyped fecal samples for individual coyote identification and used DNA metabarcoding to quantify diet composition and individual niche differentiation. The highest contributor to coyote diet overall was anthropogenic food followed by small mammals. The most frequently detected species were domestic chicken, pocket gopher (Thomomys bottae), domestic pig, and raccoon (Procyon lotor). Diet composition varied significantly across territories and among individuals, with territories explaining most of the variation. Within territories (i.e., family groups), the amount of dietary variation attributed to among‐individual differences increased with green space and decreased with impervious surface cover. The quantity of anthropogenic food in scats also was positively correlated with impervious surface cover, suggesting that coyotes consumed more human food in more urbanized territories. The quantity of invasive, human‐commensal rodents in the diet was positively correlated with the number of food services in a territory. Overall, our results revealed substantial intraspecific variation in coyote diet associated with urban landscape heterogeneity and point to a diversifying effect of urbanization on population diet.more » « less
- 
            Gossmann, Toni (Ed.)Abstract In the context of evolutionary time, cities are an extremely recent development. Although our understanding of how urbanization alters ecosystems is well developed, empirical work examining the consequences of urbanization on adaptive evolution remains limited. To facilitate future work, we offer candidate genes for one of the most prominent urban carnivores across North America. The coyote (Canis latrans) is a highly adaptable carnivore distributed throughout urban and nonurban regions in North America. As such, the coyote can serve as a blueprint for understanding the various pathways by which urbanization can influence the genomes of wildlife via comparisons along urban–rural gradients, as well as between metropolitan areas. Given the close evolutionary relationship between coyotes and domestic dogs, we leverage the well-annotated dog genome and highly conserved mammalian genes from model species to outline how urbanization may alter coyote genotypes and shape coyote phenotypes. We identify variables that may alter selection pressure for urban coyotes and offer suggestions of candidate genes to explore. Specifically, we focus on pathways related to diet, health, behavior, cognition, and reproduction. In a rapidly urbanizing world, understanding how species cope and adapt to anthropogenic change can facilitate the persistence of, and coexistence with, these species.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
