Direct recycling methods offer a non‐destructive way to regenerate degraded cathode material. The materials to be recycled in the industry typically constitute a mixture of various cathode materials extracted from a wide variety of retired lithium‐ion batteries. Bridging the gap, a direct recycling method using a low‐temperature sintering process is reported. The degraded cathode mixture of LMO (LiMn2O4) and NMC (LiNiCoMnO2) extracted from retired LIBs was successfully regenerated by the proposed method with a low sintering temperature of 300°C for 4 h. Advanced characterization tools were utilized to validate the full recovery of the crystal structure in the degraded cathode mixture. After regeneration, LMO/NMC cathode mixture shows an initial capacity of 144.0 mAh g−1and a capacity retention of 95.1% at 0.5 C for 250 cycles. The regenerated cathode mixture also shows a capacity of 83 mAh g−1at 2 C, which is slightly higher compared to the pristine material. As a result of the direct recycling process, the electrochemical performance of degraded cathode mixture is recovered to the same level as the pristine material. Life‐cycle assessment results emphasized a 90.4% reduction in energy consumption and a 51% reduction in PM2.5 emissions for lithium‐ion battery packs using a direct recycled cathode mixture compared to the pristine material.
more »
« less
Cold Sintering Enables the Reprocessing of LLZO‐Based Composites
Abstract All‐solid‐state batteries have the potential for enhanced safety and capacity over conventional lithium ion batteries, and are anticipated to dominate the energy storage industry. As such, strategies to enable recycling of the individual components are crucial to minimize waste and prevent health and environmental harm. Here, we use cold sintering to reprocess solid‐state composite electrolytes, specifically Mg and Sr doped Li7La3Zr2O12with polypropylene carbonate (PPC) and lithium perchlorate (LLZO−PPC−LiClO4). The low sintering temperature allows co‐sintering of ceramics, polymers and lithium salts, leading to re‐densification of the composite structures with reprocessing. Reprocessed LLZO−PPC−LiClO4exhibits densified microstructures with ionic conductivities exceeding 10−4 S/cm at room temperature after 5 recycling cycles. All‐solid‐state lithium batteries fabricated with reprocessed electrolytes exhibit a high discharge capacity of 168 mA h g−1at 0.1 C, and retention of performance at 0.2 C for over 100 cycles. Life cycle assessment (LCA) suggests that recycled electrolytes outperforms the pristine electrolyte process in all environmental impact categories, highlighting cold sintering as a promising technology for recycling electrolytes.
more »
« less
- Award ID(s):
- 2134643
- PAR ID:
- 10521848
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemSusChem
- Volume:
- 17
- Issue:
- 13
- ISSN:
- 1864-5631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The cold sintering process (CSP) is a low-temperature consolidation method used to fabricate materials and their composites by applying transient solvents and external pressure. In this mechano-chemical process, the local dissolution, solvent evaporation, and supersaturation of the solute lead to “solution-precipitation” for consolidating various materials to nearly full densification, mimicking the natural pressure solution creep. Because of the low processing temperature (<300°C), it can bridge the temperature gap between ceramics, metals, and polymers for co-sintering composites. Therefore, CSP provides a promising strategy of interface engineering to readily integrate high-processing temperature ceramic materials (e.g., active electrode materials, ceramic solid-state electrolytes) as “grains” and low-melting-point additives (e.g., polymer binders, lithium salts, or solid-state polymer electrolytes) as “grain boundaries.” In this minireview, the mechanisms of geomimetics CSP and energy dissipations are discussed and compared to other sintering technologies. Specifically, the sintering dynamics and various sintering aids/conditions methods are reviewed to assist the low energy consumption processes. We also discuss the CSP-enabled consolidation and interface engineering for composite electrodes, composite solid-state electrolytes, and multi-component laminated structure battery devices for high-performance solid-state batteries. We then conclude the present review with a perspective on future opportunities and challenges.more » « less
-
Flexible and low-cost poly(ethylene oxide) (PEO)-based electrolytes are promising for all-solid-state Li-metal batteries because of their compatibility with a metallic lithium anode. However, the low room-temperature Li-ion conductivity of PEO solid electrolytes and severe lithium-dendrite growth limit their application in high-energy Li-metal batteries. Here we prepared a PEO/perovskite Li 3/8 Sr 7/16 Ta 3/4 Zr 1/4 O 3 composite electrolyte with a Li-ion conductivity of 5.4 × 10 −5 and 3.5 × 10 −4 S cm −1 at 25 and 45 °C, respectively; the strong interaction between the F − of TFSI − (bis-trifluoromethanesulfonimide) and the surface Ta 5+ of the perovskite improves the Li-ion transport at the PEO/perovskite interface. A symmetric Li/composite electrolyte/Li cell shows an excellent cyclability at a high current density up to 0.6 mA cm −2 . A solid electrolyte interphase layer formed in situ between the metallic lithium anode and the composite electrolyte suppresses lithium-dendrite formation and growth. All-solid-state Li|LiFePO 4 and high-voltage Li|LiNi 0.8 Mn 0.1 Co 0.1 O 2 batteries with the composite electrolyte have an impressive performance with high Coulombic efficiencies, small overpotentials, and good cycling stability.more » « less
-
Abstract LiNO3is a widely used salt‐additive that markedly improves the stability of ether‐based electrolytes at a Li metal anode but is generally regarded as incompatible with alkyl carbonates. Here we find that contrary to common wisdom, cyclic carbonate solvents such as ethylene carbonate can dissolve up to 0.7 M LiNO3without any additives, largely improving the anode reversibility. We demonstrate the significance of our findings by upgrading various state‐of‐the‐art carbonate electrolytes with LiNO3, which provides large improvements in batteries composed of thin lithium (50 μm) anode and high voltage cathodes. Capacity retentions of 90.5 % after 600 cycles and 92.5 % after 200 cycles are reported for LiNi0.6Mn0.2Co0.2O2(2 mAh cm−2, 0.5 C) and LiNi0.8Mn0.1Co0.1O2cathode (4 mAh cm−2, 0.2 C), respectively. 1 Ah pouch cells (≈300 Wh kg−1) retain more than 87.9 % after 100 cycles at 0.5 C. This work illustrates that reforming traditional carbonate electrolytes provides a scalable, cost‐effective approach towards practical LMBs.more » « less
-
Abstract Aqueous zinc‐ion batteries are promising alternatives to lithium‐ion batteries due to their cost‐effectiveness and improved safety. However, several challenges, including corrosion, dendrites, and water decomposition at the Zn anode, hinder their performance. Herein, an approach is proposed, that deviates from the conventional design by adding water into a propylene carbonate‐based organic electrolyte to prepare a non‐flammable “water‐in‐organic” electrolyte. The chaotropic salt Zn(ClO4)2exploits the Hofmeister effect to promote the miscibility of immiscible liquid phases. Interactions between propylene carbonate and water restrict water activity and mitigate unfavorable reactions. This electrolyte facilitates preferential Zn (002) deposition and the formation of solid electrolyte interphase. Consequently, the “water‐in‐organic” electrolyte achieves a 99.5% Coulombic efficiency at 1 mA cm−2over 1000 cycles in Zn/Cu cells, and constant cycling over 1000 h in Zn/Zn symmetric cells. A Na0.33V2O5/Zn battery exhibits impressive cycling stability with a capacity of 175 mAh g−1for 800 cycles at 2 A g−1. Additionally, this electrolyte enables sustainable cycling across a wide temperature range from −20 to 50 °C. The design of a “water‐in‐organic” electrolyte employing a chaotropic salt presents a potential strategy for high‐performance electrolytes in zinc‐ion batteries with a large stability window and a wide temperature range.more » « less