skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on February 22, 2025

Title: Optimal Rate-Matrix Pruning For Heterogeneous Systems

We consider large-scale load balancing systems where processing time distribution of tasks depend on both task and server types. We analyze the system in the asymptotic regime where the number of task and server types tend to infinity proportionally to each other. In such heterogeneous setting, popular policies like Join Fastest Idle Queue (JFIQ), Join Fastest Shortest Queue (JFSQ) are known to perform poorly and they even shrink the stability region. Moreover, to the best of our knowledge, in this setup, finding a scalable policy with provable performance guarantee has been an open question prior to this work. In this paper, we propose and analyze two asymptotically delay-optimal dynamic load balancing approaches: (a) one that efficiently reserves the processing capacity of each server for good tasks and route tasks under the Join Idle Queue policy; and (b) a speed-priority policy that increases the probability of servers processing tasks at a high speed. Introducing a novel analytical framework and using the mean-field method and stochastic coupling arguments, we prove that both policies above achieve asymptotic zero queueing, whereby the probability that a typical task is assigned to an idle server tends to 1 as the system scales.

 
more » « less
Award ID(s):
2113027
NSF-PAR ID:
10522111
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM SIGMETRICS Performance Evaluation Review
Volume:
51
Issue:
4
ISSN:
0163-5999
Page Range / eLocation ID:
26 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Applications in cloud platforms motivate the study of efficient load balancing under job-server constraints and server heterogeneity. In this paper, we study load balancing on a bipartite graph where left nodes correspond to job types and right nodes correspond to servers, with each edge indicating that a job type can be served by a server. Thus edges represent locality constraints, i.e., an arbitrary job can only be served at servers which contain certain data and/or machine learning (ML) models. Servers in this system can have heterogeneous service rates. In this setting, we investigate the performance of two policies named Join-the-Fastest-of-the-Shortest-Queue (JFSQ) and Join-the-Fastest-of-the-Idle-Queue (JFIQ), which are simple variants of Join-the-Shortest-Queue and Join-the-Idle-Queue, where ties are broken in favor of the fastest servers. Under a "well-connected'' graph condition, we show that JFSQ and JFIQ are asymptotically optimal in the mean response time when the number of servers goes to infinity. In addition to asymptotic optimality, we also obtain upper bounds on the mean response time for finite-size systems. We further show that the well-connectedness condition can be satisfied by a random bipartite graph construction with relatively sparse connectivity. 
    more » « less
  2. Abstract

    This paper studies load balancing for many‐server (Nservers) systems. Each server has a buffer of sizeb − 1, and can have at most one job in service andb − 1 jobs in the buffer. The service time of a job follows the Coxian‐2 distribution. We focus on steady‐state performance of load balancing policies in the heavy traffic regime such that the normalized load of system isλ = 1 − Nαfor 0 < α < 0.5. We identify a set of policies that achieve asymptotic zero waiting. The set of policies include several classical policies such as join‐the‐shortest‐queue (JSQ), join‐the‐idle‐queue (JIQ), idle‐one‐first (I1F) and power‐of‐d‐choices (Po d) withd = O(Nα log N). The proof of the main result is based on Stein's method and state space collapse. A key technical contribution of this paper is the iterative state space collapse approach that leads to a simple generator approximation when applying Stein's method.

     
    more » « less
  3. The fundamental problem in the study of parallel-server systems is that of finding and analyzing routing policies of arriving jobs to the servers that efficiently balance the load on the servers. The most well-studied policies are (in decreasing order of efficiency) join the shortest workload (JSW), which assigns arrivals to the server with the least workload; join the shortest queue (JSQ), which assigns arrivals to the smallest queue; the power-of-[Formula: see text] (PW([Formula: see text])), which assigns arrivals to the shortest among [Formula: see text] queues that are sampled from the total of [Formula: see text] queues uniformly at random; and uniform routing, under which arrivals are routed to one of the [Formula: see text] queues uniformly at random. In this paper we study the stability problem of parallel-server systems, assuming that routing errors may occur, so that arrivals may be routed to the wrong queue (not the smallest among the relevant queues) with a positive probability. We treat this routing mechanism as a probabilistic routing policy, named a [Formula: see text]-allocation policy, that generalizes the PW([Formula: see text]) policy, and thus also the JSQ and uniform routing, where [Formula: see text] is an [Formula: see text]-dimensional vector whose components are the routing probabilities. Our goal is to study the (in)stability problem of the system under this routing mechanism, and under its “nonidling” version, which assigns new arrivals to an idle server, if such a server is available, and otherwise routes according to the [Formula: see text]-allocation rule. We characterize a sufficient condition for stability, and prove that the stability region, as a function of the system’s primitives and [Formula: see text], is in general smaller than the set [Formula: see text]. Our analyses build on representing the queue process as a continuous-time Markov chain in an ordered space of [Formula: see text]-dimensional real-valued vectors, and using a generalized form of the Schur-convex order. 
    more » « less
  4. null (Ed.)
    In multi-server queueing systems where there is no central queue holding all incoming jobs, job dispatching policies are used to assign incoming jobs to the queue at one of the servers. Classic job dispatching policies such as join-the-shortest-queue and shortest expected delay assume that the service rates and queue lengths of the servers are known to the dispatcher. In this work, we tackle the problem of job dispatching without the knowledge of service rates and queue lengths, where the dispatcher can only obtain noisy estimates of the service rates by observing job departures. This problem presents a novel exploration-exploitation trade-off between sending jobs to all the servers to estimate their service rates, and exploiting the currently known fastest servers to minimize the expected queueing delay. We propose a bandit-based exploration policy that learns the service rates from observed job departures. Unlike the standard multi-armed bandit problem where only one out of a finite set of actions is optimal, here the optimal policy requires identifying the optimal fraction of incoming jobs to be sent to each server. We present a regret analysis and simulations to demonstrate the effectiveness of the proposed bandit-based exploration policy. 
    more » « less
  5. Consider a system with N identical single-server queues and a number of task types, where each server is able to process only a small subset of possible task types. Arriving tasks select [Formula: see text] random compatible servers and join the shortest queue among them. The compatibility constraints are captured by a fixed bipartite graph between the servers and the task types. When the graph is complete bipartite, the mean-field approximation is accurate. However, such dense compatibility graphs are infeasible for large-scale implementation. We characterize a class of sparse compatibility graphs for which the mean-field approximation remains valid. For this, we introduce a novel notion, called proportional sparsity, and establish that systems with proportionally sparse compatibility graphs asymptotically match the performance of a fully flexible system. Furthermore, we show that proportionally sparse random compatibility graphs can be constructed, which reduce the server degree almost by a factor [Formula: see text] compared with the complete bipartite compatibility graph. 
    more » « less