Title: Optimal Rate-Matrix Pruning For Heterogeneous Systems
We consider large-scale load balancing systems where processing time distribution of tasks depend on both task and server types. We analyze the system in the asymptotic regime where the number of task and server types tend to infinity proportionally to each other. In such heterogeneous setting, popular policies like Join Fastest Idle Queue (JFIQ), Join Fastest Shortest Queue (JFSQ) are known to perform poorly and they even shrink the stability region. Moreover, to the best of our knowledge, in this setup, finding a scalable policy with provable performance guarantee has been an open question prior to this work. In this paper, we propose and analyze two asymptotically delay-optimal dynamic load balancing approaches: (a) one that efficiently reserves the processing capacity of each server for good tasks and route tasks under the Join Idle Queue policy; and (b) a speed-priority policy that increases the probability of servers processing tasks at a high speed. Introducing a novel analytical framework and using the mean-field method and stochastic coupling arguments, we prove that both policies above achieve asymptotic zero queueing, whereby the probability that a typical task is assigned to an idle server tends to 1 as the system scales. more »« less
Weng, Wentao; Zhou, Xingyu; Srikant, R.
(, Proceedings of the ACM on Measurement and Analysis of Computing Systems)
null
(Ed.)
Applications in cloud platforms motivate the study of efficient load balancing under job-server constraints and server heterogeneity. In this paper, we study load balancing on a bipartite graph where left nodes correspond to job types and right nodes correspond to servers, with each edge indicating that a job type can be served by a server. Thus edges represent locality constraints, i.e., an arbitrary job can only be served at servers which contain certain data and/or machine learning (ML) models. Servers in this system can have heterogeneous service rates. In this setting, we investigate the performance of two policies named Join-the-Fastest-of-the-Shortest-Queue (JFSQ) and Join-the-Fastest-of-the-Idle-Queue (JFIQ), which are simple variants of Join-the-Shortest-Queue and Join-the-Idle-Queue, where ties are broken in favor of the fastest servers. Under a "well-connected'' graph condition, we show that JFSQ and JFIQ are asymptotically optimal in the mean response time when the number of servers goes to infinity. In addition to asymptotic optimality, we also obtain upper bounds on the mean response time for finite-size systems. We further show that the well-connectedness condition can be satisfied by a random bipartite graph construction with relatively sparse connectivity.
Liu, Xin; Gong, Kang; Ying, Lei
(, Naval Research Logistics (NRL))
Abstract This paper studies load balancing for many‐server (Nservers) systems. Each server has a buffer of sizeb − 1, and can have at most one job in service andb − 1 jobs in the buffer. The service time of a job follows the Coxian‐2 distribution. We focus on steady‐state performance of load balancing policies in the heavy traffic regime such that the normalized load of system isλ = 1 − N−αfor 0 < α < 0.5. We identify a set of policies that achieve asymptotic zero waiting. The set of policies include several classical policies such as join‐the‐shortest‐queue (JSQ), join‐the‐idle‐queue (JIQ), idle‐one‐first (I1F) and power‐of‐d‐choices (Po d) withd = O(Nα log N). The proof of the main result is based on Stein's method and state space collapse. A key technical contribution of this paper is the iterative state space collapse approach that leads to a simple generator approximation when applying Stein's method.
The fundamental problem in the study of parallel-server systems is that of finding and analyzing routing policies of arriving jobs to the servers that efficiently balance the load on the servers. The most well-studied policies are (in decreasing order of efficiency) join the shortest workload (JSW), which assigns arrivals to the server with the least workload; join the shortest queue (JSQ), which assigns arrivals to the smallest queue; the power-of-[Formula: see text] (PW([Formula: see text])), which assigns arrivals to the shortest among [Formula: see text] queues that are sampled from the total of [Formula: see text] queues uniformly at random; and uniform routing, under which arrivals are routed to one of the [Formula: see text] queues uniformly at random. In this paper we study the stability problem of parallel-server systems, assuming that routing errors may occur, so that arrivals may be routed to the wrong queue (not the smallest among the relevant queues) with a positive probability. We treat this routing mechanism as a probabilistic routing policy, named a [Formula: see text]-allocation policy, that generalizes the PW([Formula: see text]) policy, and thus also the JSQ and uniform routing, where [Formula: see text] is an [Formula: see text]-dimensional vector whose components are the routing probabilities. Our goal is to study the (in)stability problem of the system under this routing mechanism, and under its “nonidling” version, which assigns new arrivals to an idle server, if such a server is available, and otherwise routes according to the [Formula: see text]-allocation rule. We characterize a sufficient condition for stability, and prove that the stability region, as a function of the system’s primitives and [Formula: see text], is in general smaller than the set [Formula: see text]. Our analyses build on representing the queue process as a continuous-time Markov chain in an ordered space of [Formula: see text]-dimensional real-valued vectors, and using a generalized form of the Schur-convex order.
Banerjee, Sayan; Budhiraja, Amarjit; Estevez, Benjamin
(, Mathematics of Operations Research)
Consider a queuing system with K parallel queues in which the server for each queue processes jobs at rate n and the total arrival rate to the system is [Formula: see text], where [Formula: see text] and n is large. Interarrival and service times are taken to be independent and exponentially distributed. It is well known that the join-the-shortest-queue (JSQ) policy has many desirable load-balancing properties. In particular, in comparison with uniformly at random routing, the time asymptotic total queue-length of a JSQ system, in the heavy traffic limit, is reduced by a factor of K. However, this decrease in total queue-length comes at the price of a high communication cost of order [Formula: see text] because at each arrival instant, the state of the full K-dimensional system needs to be queried. In view of this, it is of interest to study alternative routing policies that have lower communication costs and yet have similar load-balancing properties as JSQ. In this work, we study a family of such rank-based routing policies, which we will call Marginal Size Bias Load-Balancing policies, in which [Formula: see text] of the incoming jobs are routed to servers with probabilities depending on their ranked queue length and the remaining jobs are routed uniformly at random. A particular case of such routing schemes, referred to as the marginal JSQ (MJSQ) policy, is one in which all the [Formula: see text] jobs are routed using the JSQ policy. Our first result provides a heavy traffic approximation theorem for such queuing systems in terms of reflected diffusions in the positive orthant [Formula: see text]. It turns out that, unlike the JSQ system, where, due to a state space collapse, the heavy traffic limit is characterized by a one-dimensional reflected Brownian motion, in the setting of MJSQ (and for the more general rank-based routing schemes), there is no state space collapse, and one obtains a novel diffusion limit which is the constrained analogue of the well-studied Atlas model (and other rank-based diffusions) that arise from certain problems in mathematical finance. Next, we prove an interchange of limits ([Formula: see text] and [Formula: see text]) result which shows that, under conditions, the steady state of the queuing system is well approximated by that of the limiting diffusion. It turns out that the latter steady state can be given explicitly in terms of product laws of Exponential random variables. Using these explicit formulae, and the interchange of limits result, we compute the time asymptotic total queue-length in the heavy traffic limit for the MJSQ system. We find the striking result that, although in going from JSQ to MJSQ, the communication cost is reduced by a factor of [Formula: see text], the steady-state heavy traffic total queue-length increases by at most a constant factor (independent of n, K) which can be made arbitrarily close to one by increasing a MJSQ parameter. We also study the case where the system is overloaded—namely, [Formula: see text]. For this case, we show that although the K-dimensional MJSQ system is unstable, unlike the setting of random routing, the system has certain desirable and quantifiable load-balancing properties. In particular, by establishing a suitable interchange of limits result, we show that the steady-state difference between the maximum and the minimum queue lengths stays bounded in probability (in the heavy traffic parameter n). Funding: Financial support from the National Science Foundation [RTG Award DMS-2134107] is gratefully acknowledged. S. Banerjee received financial support from the National Science Foundation [NSF-CAREER Award DMS-2141621]. A. Budhiraja received financial support from the National Science Foundation [Grant DMS-2152577].
Choudhury, Tuhinangshu; Joshi, Gauri; Wang, Weina; Shakkottai, Sanjay
(, ACM MobiHoc: International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks)
null
(Ed.)
In multi-server queueing systems where there is no central queue holding all incoming jobs, job dispatching policies are used to assign incoming jobs to the queue at one of the servers. Classic job dispatching policies such as join-the-shortest-queue and shortest expected delay assume that the service rates and queue lengths of the servers are known to the dispatcher. In this work, we tackle the problem of job dispatching without the knowledge of service rates and queue lengths, where the dispatcher can only obtain noisy estimates of the service rates by observing job departures. This problem presents a novel exploration-exploitation trade-off between sending jobs to all the servers to estimate their service rates, and exploiting the currently known fastest servers to minimize the expected queueing delay. We propose a bandit-based exploration policy that learns the service rates from observed job departures. Unlike the standard multi-armed bandit problem where only one out of a finite set of actions is optimal, here the optimal policy requires identifying the optimal fraction of incoming jobs to be sent to each server. We present a regret analysis and simulations to demonstrate the effectiveness of the proposed bandit-based exploration policy.
@article{osti_10522111,
place = {Country unknown/Code not available},
title = {Optimal Rate-Matrix Pruning For Heterogeneous Systems},
url = {https://par.nsf.gov/biblio/10522111},
DOI = {10.1145/3649477.3649492},
abstractNote = {We consider large-scale load balancing systems where processing time distribution of tasks depend on both task and server types. We analyze the system in the asymptotic regime where the number of task and server types tend to infinity proportionally to each other. In such heterogeneous setting, popular policies like Join Fastest Idle Queue (JFIQ), Join Fastest Shortest Queue (JFSQ) are known to perform poorly and they even shrink the stability region. Moreover, to the best of our knowledge, in this setup, finding a scalable policy with provable performance guarantee has been an open question prior to this work. In this paper, we propose and analyze two asymptotically delay-optimal dynamic load balancing approaches: (a) one that efficiently reserves the processing capacity of each server for good tasks and route tasks under the Join Idle Queue policy; and (b) a speed-priority policy that increases the probability of servers processing tasks at a high speed. Introducing a novel analytical framework and using the mean-field method and stochastic coupling arguments, we prove that both policies above achieve asymptotic zero queueing, whereby the probability that a typical task is assigned to an idle server tends to 1 as the system scales.},
journal = {ACM SIGMETRICS Performance Evaluation Review},
volume = {51},
number = {4},
publisher = {ACM},
author = {Zhao, Zhisheng and Mukherjee, Debankur},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.