skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reviewing ecological implications of mycorrhizal fungal interactions in the Brassicaceae
Mycorrhizal associations are plant-fungal mutualisms that are fairly ubiquitous and likely evolved multiple times in phylogenic history; however, some plant families have consistently been identified as non-mycorrhizal, including the Brassicaceae. In this paper, we reviewed the literature and DNA databases for potential mechanisms that preclude mycorrhizal symbioses in the Brassicaceae and for exceptions to the general observation of non-mycorrhizal status within this plant family. In instances of association between members of the Brassicaceae and arbuscular mycorrhizal fungi we posed hypotheses for why these interactions occur in the species and sites observed. Instances of inconsistent association with mycorrhizal fungi were attributed to inter- and intraspecific variations in plant biology, disagreements in vernacular, methodology contradicting historical mycorrhizal surveys, and association being a facultative, variable trait that is determined by species-site interactions. We propose further research on a) the extent of mycorrhizal association in the Brassicaceae, b) the molecular mechanisms dictating association, and c) whether Brassicaceae-mycorrhizal fungal interactions result in nutrient transfer, and their particular roles in the family’s distribution across heterogeneous and harsh environments.  more » « less
Award ID(s):
2217353 2106103
PAR ID:
10522613
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
14
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The mechanisms causing invasive species impact are rarely empirically tested, limiting our ability to understand and predict subsequent changes in invaded plant communities. Invader disruption of native mutualistic interactions is a mechanism expected to have negative effects on native plant species. Specifically, disruption of native plant‐fungal mutualisms may provide non‐mycorrhizal plant invaders an advantage over mycorrhizal native plants. InvasiveAlliaria petiolata(garlic mustard) produces secondary chemicals toxic to soil microorganisms including mycorrhizal fungi, and is known to induce physiological stress and reduce population growth rates of native forest understory plant species. Here, we report on a 11‐yr manipulative field experiment in replicated forest plots testing if the effects of removal of garlic mustard on the plant community support the mutualism disruption hypothesis within the entire understory herbaceous community. We compare community responses for two functional groups: the mycorrhizal vs. the non‐mycorrhizal plant communities. Our results show that garlic mustard weeding alters the community composition, decreases community evenness, and increases the abundance of understory herbs that associate with mycorrhizal fungi. Conversely, garlic mustard has no significant effects on the non‐mycorrhizal plant community. Consistent with the mutualism disruption hypothesis, our results demonstrate that allelochemical producing invaders modify the plant community by disproportionately impacting mycorrhizal plant species. We also demonstrate the importance of incorporating causal mechanisms of biological invasion to elucidate patterns and predict community‐level responses. 
    more » « less
  2. Abstract Arbuscular mycorrhizal (AM) fungi are root symbionts that can facilitate plant growth and influence plant communities by altering plant interactions with herbivores. Therefore, AM fungi could be critical for the conservation of certain rare plants and herbivores. For example, North American milkweed species are crucial hosts for monarch butterflies (Danaus plexippus). Understanding how mycorrhizal composition affects milkweeds will have direct impacts on the conservation and restoration of both increasingly threatened guilds. We present data from three studies on the effect of AM fungal composition on milkweed growth, latex production, and establishment. First, we grew seven milkweed species with and without a mixture of native mycorrhizal fungi. We assessed how important fungal composition is to milkweed growth and latex production by growing four milkweed species with seven fungal compositions, as single‐species inoculations with four native fungi, a mixture of native fungi, a single commercial fungus of presumably non‐native origin, and noninoculated controls. Finally, we assessed the field establishment of two milkweed species with and without native mycorrhizal inoculation. Milkweed species grew 98% larger and produced 82% more latex after inoculation with native mycorrhizae. Milkweeds were strongly affected by fungal composition; milkweeds were inhibited by commercial fungi (average of −14% growth) and showed variable but positive responses to native fungal species (average of +3% to +38% biomass). Finally, we found that restoration establishment was dependent on inoculation with native fungi and milkweed species. Overall, our findings indicate that some milkweed species (i.e.,Asclepias syriacaandA. incarnata) are not responsive to mycorrhizal fungal presence or sensitive to mycorrhizal composition while others are, including endangered species (A. meadii) and species of high conservation value (A. tuberosa). We conclude that the reintroduction of native AM fungi could improve the establishment of desirable milkweed species and should be considered within strategies for plantings for monarch conservation. 
    more » « less
  3. ABSTRACT The plant–mycorrhizal fungi relationship can range from mutualistic to parasitic as a function of the fungal taxa involved, plant ontogeny, as well as the availability of resources. Despite the implications this relationship may have on forest carbon cycling and storage, we know little about how mature trees may be impacted by mycorrhizae and how this impact may vary across the landscape. We collected growth data of two arbuscular mycorrhizal fungi (AMF)‐associated tree species,Acer rubrumandA. saccharum, and one ectomycorrhizal fungi (EMF)‐associated tree species,Quercus rubra, to assess how the mycorrhizal fungi–plant association may vary along a gradient of nitrogen (N) availability. Individual assessments of fungal taxa relative abundances showed non‐linear associations with tree growth; positive associations for the two AMF‐associated trees were mostly under low N, whereas positive to neutral associations for the EMF‐associated tree mainly took place at high N. OnlyA. rubrumexhibited greater tree growth with its tree soil‐specific mycorrhizal community when compared with predictions under a random mycorrhizal soil community. Because mycorrhizal fungi are likely to mediate how plants respond to warming, increasing levels of N deposition and of atmospheric CO2, understanding these relationships is critical to accurately forecasting tree growth. 
    more » « less
  4. Species interactions exhibit varying degrees of specialization, ranging from generalist to specialist interactions. For many interactions (e.g., plant-microbiome) we lack standardized metrics of specialization, hindering our ability to apply comparative frameworks of specificity across niche axes and organismal groups. Here, we discuss the concept of plant host specificity of arbuscular mycorrhizal (AM) fungi and ectomycorrhizal (EM) fungi, including the predominant theories for their interactions: Passenger, Driver, and Habitat Hypotheses. We focus on five major areas of interest in advancing the field of plant-mycorrhizal fungal host specificity: phylogenetic specificity, host physiology specificity, functional specificity, habitat specificity, and mycorrhizal fungal-mediated plant rarity. Considering the need to elucidate foundational concepts of specificity in this globally important symbiosis, we propose standardized metrics and comparative studies to enhance our understanding. We also emphasize the importance of analyzing global mycorrhizal data holistically to draw meaningful conclusions and suggest a shift toward single-species analyses to unravel the complexities underlying these associations. 
    more » « less
  5. Summary First principles predict that diversity at one trophic level often begets diversity at other levels, suggesting plant and mycorrhizal fungal diversity should be coupled. Local‐scale studies have shown positive coupling between the two, but the association is less consistent when extended to larger spatial and temporal scales. These inconsistencies are likely due to divergent relationships of different mycorrhizal fungal guilds to plant diversity, scale dependency, and a lack of coordinated sampling efforts. Given that mycorrhizal fungi play a central role in plant productivity and nutrient cycling, as well as ecosystem responses to global change, an improved understanding of the coupling between plant and mycorrhizal fungal diversity across scales will reduce uncertainties in predicting the ecosystem consequences of species gains and losses. 
    more » « less