skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics of Mid‐Latitude Sporadic‐E and Its Impact on HF Propagation in the North American Sector
Abstract Sporadic‐E (Es) are thin layers of enhanced ionization observed in the E‐region, typically between 95 and 120 km altitude. Es plays an important role in controlling the dynamics of the upper atmosphere and it is necessary to understand the geophysical factors influencing Es from both the scientific and operational perspectives. While the wind‐shear theory is widely accepted as an important mechanism responsible for the generation of Es, there are still gaps in the current state of our knowledge. For example, we are yet to determine precisely how changes in the dynamics of horizontal winds impact the formation, altitude, and destruction of Es layers. In this study, we report results from a coordinated experimental campaign between the Millstone Hill Incoherent Scatter Radar, the SuperDARN radar at Blackstone, and the Millstone Hill Digisonde to monitor the dynamics of mid‐latitude Es layers. We report observations during a 15‐hr window between 13 UT on 3 June 2022 and 4 UT on 4 June 2022, which was marked by the presence of a strong Es layer. We find that the height of the Es layer is collocated with strong vertical shears in atmospheric tides and that the zonal wind shears play a more important role than meridional wind shears in generating Es, especially at lower altitudes. Finally, we show that in the presence of Es, SuperDARN ground backscatter moves to closer ranges, and the height and critical frequency of the Es layer have a significant impact on the location and intensity of HF ground scatter.  more » « less
Award ID(s):
1935110 1839509
PAR ID:
10522755
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
128
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Super Dual Auroral Radar Network (SuperDARN) is a network of High Frequency (HF) radars that are typically used for monitoring plasma convection in the Earth's ionosphere. A majority of SuperDARN backscatter can broadly be divided into three categories: (a) ionospheric scatter due to reflections from plasma irregularities in the E and F regions of the ionosphere, (b) ground scatter caused by reflections from the ground/sea surface following reflection in the ionosphere, and (c) backscatter from meteor trails left by meteoroids as they enter the Earth's atmosphere. Due to the complex nature of HF propagation and mid‐latitude electrodynamics, it is often not straightforward to distinguish between different modes of backscatter observed by SuperDARN. In this study, we present a new two‐stage machine learning algorithm for identifying different backscatter modes in SuperDARN data. In the first stage, a neural network that “mimics” ray‐tracing is used to predict the probability of ionospheric and ground scatter occurring at a given location along with parameters like the elevation angles, reflection heights etc. The inputs to the network include parameters that control HF propagation, such as signal frequency, season, UT time, and geomagnetic activity levels. In the second stage, the output probabilities from the neural network and actual SuperDARN data are clustered together to determine the category of the backscatter. Our model can distinguish between meteor scatter, 1/2 hop E‐/F‐region ionospheric as well as ground/sea scatter. We validate our model by comparing predicted elevation angles with those measured at a SuperDARN radar. 
    more » « less
  2. Abstract Propagation of high‐frequency (HF) radio signals is strongly dependent on the ionospheric electron density structure along a communications link. The ground‐based, HF space weather radars of the Super Dual Auroral Radar Network (SuperDARN) utilize the ionospheric refraction of transmitted signals to monitor the global circulation ofE‐ andF‐region plasma irregularities. Previous studies have assessed the propagation characteristics of backscatter echoes from ionospheric irregularities in the auroral and polar regions of the Earth's ionosphere. By default, the geographic location of these echoes are found using empirical models which estimate the virtual backscattering height from the measured range along the radar signal path. However, the performance of these virtual height models has not yet been evaluated for mid‐latitude SuperDARN radar observations or for ground scatter (GS) propagation modes. In this study, we derive a virtual height model suitable for mid‐latitude SuperDARN observations using 5 years of data from the Christmas Valley East and West radars. This empirical model can be applied to both ionospheric and GS observations and provides an improved estimate of the ground range to the backscatter location compared to existing high‐latitude virtual height models. We also identify a region of overlapping half‐hopF‐region ionospheric scatter and one‐hopE‐region GS where the measured radar parameters (e.g., velocity, spectral width, elevation angle) are insufficient to discriminate between the two scatter types. Further studies are required to determine whether these backscatter echoes of ambiguous origin are observed by other mid‐latitude SuperDARN radars and their potential impact on scatter classification schemes. 
    more » « less
  3. This paper studies the three-dimensional (3-D) ionospheric electron density variation over the continental US and adjacent regions during the August 2017 Great American Solar Eclipse event, using Millstone Hill incoherent scatter radar observations, ionosonde data, the Swarm satellite measurements, and a new TEC-based ionospheric data assimilation system (TIDAS). The TIDAS data assimilation system can reconstruct a 3-D electron density distribution over continental US and adjacent regions, with a spatial–temporal resolution of 1∘× 1∘ in latitude and longitude, 20 km in altitude, and 5 min in universal time. The combination of multi-instrumental observations and the high-resolution TIDAS data assimilation products can well represent the dynamic 3-D ionospheric electron density response to the solar eclipse, providing important altitude information and fine-scale details. Results show that the eclipse-induced ionospheric electron density depletion can exceed 50% around the F2-layer peak height between 200 and 300 km. The recovery of electron density following the maximum depletion exhibits an altitude-dependent feature, with lower altitudes exhibiting a faster recovery than the F2 peak region and above. The recovery feature was also characterized by a post-eclipse electron density enhancement of 15–30%, which is particularly prominent in the topside ionosphere at altitudes above 300 km. 
    more » « less
  4. Abstract Observations of coherent scatter from patchy sporadicElayers in the subauroral zone made with a 30‐MHz coherent scatter radar imager are presented. The quasiperiodic (QP) echoes are similar to what has been observed at middle latitudes but with some differences. The echoes arise from bands of scatterers aligned mainly northwest to southeast and propagating to the southwest. A notable difference from observations at middle latitudes is the appearance of secondary irregularities or braids oriented obliquely to the primary bands and propagating mainly northward along them. We present a spectral simulation of the patchy layers that describes neutral atmospheric dynamics with the incompressible Navier Stokes equations and plasma dynamics with an extended MHD model. The simulation is initialized with turning shears in the form of an Ekman spiral. Ekman‐type instability deforms the sporadicElayer through compressible and incompressible motion. The layer ultimately exhibits both the QP bands and the braids, consequences mainly of primary and secondary neutral dynamic instability. Vorticity due to dynamic instability is an important source of structuring in the sporadicElayer. 
    more » « less
  5. The space hurricane is a newly discovered large-scale three-dimensional magnetic vortex structure that spans the polar ionosphere and magnetosphere. It has been suggested to open a fast energy transport channel for the solar wind to invade Earth’s magnetosphere under northward interplanetary magnetic field (IMF) conditions. It is, therefore, an important phenomenon to understand the solar wind–magnetosphere–ionosphere coupling process under northward IMF conditions. In this study, we report the three-dimensional ionospheric plasma properties of a space hurricane event in the Northern Hemisphere observed by multiple instruments. Based on the convection velocity observations from ground-based radars and polar satellites, we confirm that the major modulation to the polar cap convection called a space hurricane rotates clockwise at the altitude of the ionosphere. Ground-based incoherent scatter radar and polar satellite observations reveal four features associated with the space hurricane: 1) strong plasma flow shears and being embedded in a clockwise lobe convection cell; 2) a major addition to the total energy deposition in the ionosphere–thermosphere system by Joule heating; 3) downward ionospheric electron transport; and 4) multiple ion-temperature enhancements in the sunward velocity region, likely from the spiral arms of the space hurricane. These results present, first, the impact of space hurricane on the low-altitude ionosphere and provide additional insights on the magnetospheric impact on structuring in the polar ionosphere. 
    more » « less