skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inferring Small Neutron Star Spins with Neutron Star–Black Hole Mergers
Abstract The precise measurement of neutron star (NS) spins can provide important insight into the formation and evolution of compact binaries containing NSs. While traditional methods of NS spin measurement rely on pulsar observations, gravitational-wave detections offer a complementary avenue. However, determining component spins with gravitational waves is hindered by the small dimensionless spins of the NSs and the degeneracy in the mass and spin parameters. This degeneracy can be addressed by the inclusion of higher-order modes in the waveform, which are important for systems with unequal masses. This study shows the suitability of NS–black hole mergers, which are naturally mass-asymmetric, for precise NS spin measurements. We explore the effects of the black hole masses and spins, higher-mode content, inclination angles, and detector sensitivity on the measurement of NS spin. We find that networks with next-generation observatories like the Cosmic Explorer and the Einstein Telescope can distinguish NS dimensionless spin of 0.04 (0.1) from zero at 1σconfidence for events within ∼350 (∼1000) Mpc. Networks with A+ and Adetectors achieve similar distinction within ∼30 (∼70) Mpc and ∼50 (∼110) Mpc, respectively.  more » « less
Award ID(s):
2308886
PAR ID:
10522813
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
970
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 12
Size(s):
Article No. 12
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gravitational-wave (GW) detections of merging neutron star–black hole (NSBH) systems probe astrophysical neutron star (NS) and black hole (BH) mass distributions, especially at the transition between NS and BH masses. Of particular interest are the maximum NS mass, minimum BH mass, and potential mass gap between them. While previous GW population analyses assumed all NSs obey the same maximum mass, if rapidly spinning NSs exist, they can extend to larger maximum masses than nonspinning NSs. In fact, several authors have proposed that the ∼2.6Mobject in the event GW190814—either the most massive NS or least massive BH observed to date—is a rapidly spinning NS. We therefore infer the NSBH mass distribution jointly with the NS spin distribution, modeling the NS maximum mass as a function of spin. Using four LIGO–Virgo NSBH events including GW190814, if we assume that the NS spin distribution is uniformly distributed up to the maximum (breakup) spin, we infer the maximum nonspinning NS mass is 2.7 0.4 + 0.5 M (90% credibility), while assuming only nonspinning NSs, the NS maximum mass must be >2.53M(90% credibility). The data support the mass gap’s existence, with a minimum BH mass at 5.4 1.0 + 0.7 M . With future observations, under simplified assumptions, 150 NSBH events may constrain the maximum nonspinning NS mass to ±0.02M, and we may even measure the relation between the NS spin and maximum mass entirely from GW data. If rapidly rotating NSs exist, their spins and masses must be modeled simultaneously to avoid biasing the NS maximum mass. 
    more » « less
  2. Abstract Although stable neutron stars (NSs) can in principle exist down to massesMns≈ 0.1M, standard models of stellar core-collapse predict a robust lower limitMns≳ 1.2M, roughly commensurate with the Chandrasekhar massMChof the progenitor’s iron core (electron fractionYe≈ 0.5). However, this limit may be circumvented in sufficiently dense neutron-rich environments (Ye< 0.5) for which M Ch Y e 2 is reduced to ≲1M. Such physical conditions could arise in the black hole accretion disks formed from the collapse of rapidly rotating stars (“collapsars”), as a result of gravitational instabilities and cooling-induced fragmentation, similar to models for planet formation in protostellar disks. We confirm that the conditions to form subsolar-mass NS (ssNS) may be marginally satisfied in the outer regions of massive neutrino-cooled collapsar disks. If the disk fragments into multiple ssNSs, their subsequent coalescence offers a channel for precipitating subsolar mass LIGO/Virgo gravitational-wave mergers that does not implicate primordial black holes. The model makes several additional predictions: (1) ∼Hz frequency Doppler modulation of the ssNS-merger gravitational-wave signals due to the binary’s orbital motion in the disk; (2) at least one additional gravitational-wave event (coincident within ≲hours), from the coalescence of the ssNS-merger remnant(s) with the central black hole; (3) an associated gamma-ray burst and supernova counterpart, the latter boosted in energy and enriched withr-process elements from the NS merger(s) embedded within the exploding stellar envelope (“kilonovae inside a supernova”). 
    more » « less
  3. ABSTRACT Neutron star–black hole (NSBH) mergers detected in gravitational waves have the potential to shed light on supernova physics, the dense matter equation of state, and the astrophysical processes that power their potential electromagnetic counterparts. We use the population of four candidate NSBH events detected in gravitational waves so far with a false alarm rate ≤1 yr−1 to constrain the mass and spin distributions and multimessenger prospects of these systems. We find that the black holes in NSBHs are both less massive and have smaller dimensionless spins than those in black hole binaries. We also find evidence for a mass gap between the most massive neutron stars and least massive black holes in NSBHs at 98.6-per cent credibility. Using an approach driven by gravitational-wave data rather than binary simulations, we find that fewer than 14 per cent of NSBH mergers detectable in gravitational waves will have an electromagnetic counterpart. While the inferred presence of a mass gap and fraction of sources with a counterpart depend on the event selection and prior knowledge of source classification, the conclusion that the black holes in NSBHs have lower masses and smaller spin parameters than those in black hole binaries is robust. Finally, we propose a method for the multimessenger analysis of NSBH mergers based on the non-detection of an electromagnetic counterpart and conclude that, even in the most optimistic case, the constraints on the neutron star equation of state that can be obtained with multimessenger NSBH detections are not competitive with those from gravitational-wave measurements of tides in binary neutron star mergers and radio and X-ray pulsar observations. 
    more » « less
  4. Abstract The LIGO–Virgo–KAGRA Collaboration recently detected gravitational waves (GWs) from the merger of black hole–neutron star (BHNS) binary systems GW200105 and GW200115. No coincident electromagnetic (EM) counterparts were detected. While the mass ratio and BH spin in both systems were not sufficient to tidally disrupt the NS outside the BH event horizon, other, magnetospheric mechanisms for EM emission exist in this regime and depend sensitively on the NS magnetic field strength. Combining GW measurements with EM flux upper limits, we place upper limits on the NS surface magnetic field strength above which magnetospheric emission models would have generated an observable EM counterpart. We consider fireball models powered by the black hole battery mechanism, where energy is output in gamma rays over ≲1 s. Consistency with no detection by Fermi-GBM or INTEGRAL SPI-ACS constrains the NS surface magnetic field to ≲1015G. Hence, joint GW detection and EM upper limits rule out the theoretical possibility that the NSs in GW200105 and GW200115, and the putative NS in GW190814, retain dipolar magnetic fields ≳1015G until merger. They also rule out formation scenarios where strongly magnetized magnetars quickly merge with BHs. We alternatively rule out operation of the BH-battery-powered fireball mechanism in these systems. This is the first multimessenger constraint on NS magnetic fields in BHNS systems and a novel approach to probe fields at this point in NS evolution. This demonstrates the constraining power that multimessenger analyses of BHNS mergers have on BHNS formation scenarios, NS magnetic field evolution, and the physics of BHNS magnetospheric interactions. 
    more » « less
  5. ABSTRACT It has been argued that heavy binaries composed of neutron stars (NSs) and millisecond pulsars (MSPs) can end up in the outskirts of star clusters via an interaction with a massive black hole (BH) binary expelling them from the core. We argue here, however, that this mechanism will rarely account for such observed objects. Only for primary masses ≲100 M⊙ and a narrow range of orbital separations should a BH–BH binary be both dynamically hard and produce a sufficiently low recoil velocity to retain the NS binary in the cluster. Hence, BH binaries are in general likely to eject NSs from clusters. We explore several alternative mechanisms that would cause NS/MSP binaries to be observed in the outskirts of their host clusters after a Hubble time. The most likely mechanism is a three-body interaction involving the NS/MSP binary and a normal star. We compare to Monte Carlo simulations of cluster evolution for the globular clusters NGC 6752 and 47 Tuc, and show that the models not only confirm that normal three-body interactions involving all stellar-mass objects are the dominant mechanism for putting NS/MSP binaries into the cluster outskirts, but also reproduce the observed NS/MSP binary radial distributions without needing to invoke the presence of a massive BH binary. Higher central densities and an episode of core collapse can broaden the radial distributions of NSs/MSPs and NS/MSP binaries due to three-body interactions, making these clusters more likely to host NSs in the cluster outskirts. 
    more » « less