skip to main content


Title: Broadening Participation in STEM College Majors: Effects of Attending a STEM-Focused High School

To increase participation in science, technology, engineering, and mathematics (STEM) studies and careers, some states have promoted inclusive STEM high schools. This study addressed the question of whether these high schools improve the odds that their graduates will pursue a STEM major in college. State higher education records were obtained for students surveyed as seniors in 23 inclusive STEM high schools and 19 comparison schools without a STEM focus. Propensity score weighting was used to ensure that students in the comparison school sample were very similar to those in the inclusive STEM school sample in terms of demographic characteristics and Grade 8 achievement. Students overall and from under-represented groups who had attended inclusive STEM high schools were significantly more likely to be in a STEM bachelor’s degree program two years after high school graduation. For students who entered two-year colleges, on the other hand, attending an inclusive STEM high school was not associated with entry into STEM majors.

 
more » « less
PAR ID:
10522845
Author(s) / Creator(s):
 ; ;  ; ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
AERA Open
Volume:
4
Issue:
4
ISSN:
2332-8584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. STEM graduation rates, cumulative GPAs, and final GPA distributions of years 2016 to 2019 graduates were evaluated for students who participated in Rice University’s STEM intervention (the Rice Emerging Scholars Program, or RESP, which is partly funded through an NSF SSTEM grant), which begins with a pre-freshman STEM summer bridge program. RESP participants (n=89) and a comparison category of students (n=81) were identified as being underprepared for STEM coursework. Outcomes from the rest of the graduating classes were also assessed (i.e., non-comparison, non-RESP students). Incoming high school AP and IB credits were a moderate predictor of cumulative graduation GPA. After controlling for test credits, student status predicted cumulative graduation GPA, with higher GPAs in the noncomparison, non-RESP condition. Seventy-two RESP students graduated with a STEM major (81% STEM retention) compared with 62% of comparison students and 87% of non-comparison, non-RESP students. A chi-square test found a significant difference in favor of higher STEM retention among RESP students than the comparison students. Of RESP STEM graduates, 94% graduated with at least a B- GPA, compared with 86% of the comparison students, and 97% of the non-comparison, non-RESP students. A chi-square test approached significance in favor of more B- and above GPAs among RESP students than the comparison students. Overall, we found that high school preparation predicted STEM students’ graduation GPAs. Further, although RESP participation did not predict the cumulative GPAs of STEM majors, the program may: 1) improve STEM degree persistence and 2) ensure that more of the program’s STEM graduates achieve at least a B- cumulative graduation GPA. The number of RESP and comparison students is relatively small, yet these findings nevertheless offer preliminary evidence that the intervention may be effective at improving STEM outcomes for students who would otherwise struggle the most with their coursework. As more students graduate from the university, we will be able to make stronger conclusions about the effectiveness of RESP in improving outcomes of underprepared STEM students. 
    more » « less
  2. Abstract

    This qualitative exploratory cross‐case analysis analyzed the beliefs and practices of high school counselors related to science, technology, engineering, and mathematics (STEM) academic advisement, postsecondary planning, and career participation. Interviews were conducted with high school counselors (N = 13) who were purposively sampled to represent a diversity of schools in terms of demographic variables. Findings indicated that high school counselors perceived that (a) sociocultural factors influenced student preparation for STEM, career planning, and decision making; (b) students’ STEM‐related career goals and academic behaviors were sometimes misaligned, and academic advisement often mediated this tension; and (c) their professional STEM knowledge, beliefs, and practices were influenced by professional preparation, workplace characteristics, and their academic experiences. Implications include the need for early, sustained high school STEM counseling and academic advisement; accessible professional development in STEM preparation and careers to promote multiple pathways and reduce school counselor bias; and encouraging family involvement in STEM career decision making.

     
    more » « less
  3. Abstract

    Increasingly, STEM focused high schools are used prepare students for college STEM majors and launch them into STEM careers. Yet a new focus on STEM education at the elementary levels suggests that the importance of STEM education is much broader than a preparation for workforce needs in high school or college. This paper describes a case study designed to articulate the mission and design of an effective and nationally recognized STEM‐focused elementary school. As described through the six most impactful components of STEM‐focused elementary school design at Walter Bracken STEAM Academy, the case study emphasizes the school's strong and inclusive school leadership, with staff organized into grade level groups empowered to innovate and honing their teaching practices. External partnerships are leveraged to broaden student learning opportunities. Students at Bracken engage in active learning opportunities and multidisciplinary lessons where STEM is used as a way of thinking and as a way to coherently combine content into active learning opportunities that are engaging for learners. By organizing the structural components of an exemplary STEM‐focused elementary school, we hope to deliver actionable reforms for elementary schools wanting to increase their STEM‐focused offerings.

     
    more » « less
  4. Abstract

    The pipeline of highly trained STEM (science, technology, engineering, and mathematics) professionals has narrowed in recent decades, forcing society to re‐examine how schools are discovering and developing STEM talent. Of particular concern is the finding that rural students attend post‐secondary schools at lower rates than their urban counterparts, and when they do attend, they are less likely to graduate from STEM programs. One reason may be that they are not prepared for advanced STEM coursework because they lack access to essential STEM talent‐development programs in middle or high school. This creates excellence gaps, which exacerbate the narrowing STEM pipeline to the workforce. To address this, we formed a university–school partnership to develop an outside‐of‐school STEM talent development program, called STEM Excellence, for rural middle‐school students who attend under‐resourced schools. The aim of STEM Excellence was to increase students’ achievement and aspirations while empowering their teachers to develop local STEM programs grounded in developmental psychology theories. STEM Excellence integrated the Talent Development Megamodel Principles of ability, domains of talent, opportunity, and psychosocial variables. STEM Excellence also recognized the interplay of multiple person–environment systems as presented in the Bioecological Systems Model.

     
    more » « less
  5. Abstract

    Maintaining adolescents' engagement with STEM (science, technology, engineering, and math) in and out of school may help ensure that adolescents are prepared to enter the STEM workforce. This study aims to extend prior work by documenting internal and external factors that matter for both STEM class engagement as well as engagement with STEM outside of school through STEM activism. Participants included  ninth and tenth grade students (N = 852) from ethnically diverse public schools in the Southeastern United States, approximately evenly divided by gender. Findings from regression analyses revealed that girls and participants who perceive educational barriers to STEM were less engaged in STEM classes, whereas those who reported learning about more male scientists in class, and those who reported higher levels of belonging, STEM growth mindset, and STEM motivation were more engaged in STEM classes. Those who reported higher critical motivation, critical action, belonging, and STEM motivation were more engaged in STEM activism outside of school. Findings suggest that STEM teachers and out‐of‐school program developers may learn new ways to engage students from each other. Further, findings highlight some factors that may promote engagement in STEM both in and out of schools such as belonging and STEM motivation.

     
    more » « less