skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Programming and Reprogramming the Viscoelasticity and Magnetic Response of Magnetoactive Thermoplastic Elastomers
We present a novel type of magnetorheological material that allows one to restructure the magnetic particles inside the finished composite, tuning in situ the viscoelasticity and magnetic response of the material in a wide range using temperature and an applied magnetic field. The polymer medium is an A-g-B bottlebrush graft copolymer with side chains of two types: polydimethylsiloxane and polystyrene. At room temperature, the brush-like architecture provides the tissue mimetic softness and strain stiffening of the elastomeric matrix, which is formed through the aggregation of polystyrene side chains into aggregates that play the role of physical cross-links. The aggregates partially dissociate and the matrix softens at elevated temperatures, allowing for the effective rearrangement of magnetic particles by applying a magnetic field in the desired direction. Magnetoactive thermoplastic elastomers (MATEs) based on A-g-B bottlebrush graft copolymers with different amounts of aggregating side chains filled with different amounts of carbonyl iron microparticles were prepared. The in situ restructuring of magnetic particles in MATEs was shown to significantly alter their viscoelasticity and magnetic response. In particular, the induced anisotropy led to an order-of-magnitude enhancement of the magnetorheological properties of the composites.  more » « less
Award ID(s):
2004048
PAR ID:
10523119
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Polymers
Volume:
15
Issue:
23
ISSN:
2073-4360
Page Range / eLocation ID:
4607
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Macromolecular architecture is a critical parameter when tuning polymer material properties. Although the implementation of non-linear polymers in different applications has grown over the years, polymer grafted surfaces such as nanoparticles have traditionally been composed of linear thermoplastic polymers, with a limited number of examples demonstrating a diversity in polymer architectures. In an effort to combine polymer architecturally dependent material properties with polymer grafted particles (PGPs), as opposed to conventional methods of tuning polymer grafting parameters such as the number of chains per surface area (i.e., polymer graft density), a series of bottlebrush grafted particles were synthesized using surface-initiated ring-opening metathesis polymerization (SI-ROMP). These bottlebrush PGPs are composed of glassy, semi-crystalline, and elastomeric polymer side chains with controlled backbone degrees of polymerization (Nbb) at relatively constant polymer graft density on the surface of silica particles with diameters equaling approximately 160 or 77 nm. Bottlebrush polymer chain conformations, evaluated by measuring the brush height of surface grafted polymer chains in solution and the melt, undergo drastic changes in macromolecular dimensions in different environments. In solution, brush heights increase linearly as a function of Nbb, consistent with fully stretched chains, which is confirmed using cryogenic transmission electron microscopy (Cryo-TEM). Meanwhile, brush heights are consistently at a minimum in the melt, indicative of chains collapsed on the particle surface. The conformational extremes for grafted bottlebrush polymers are unseen in any linear polymer chain systems, highlighting the effect of macromolecular architecture and surface grafting. Bottlebrush grafted particles are an exciting class of materials where diversifying polymer architectures will expand PGP material design rules that harness macromolecular architecture to dictate properties. 
    more » « less
  2. Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this tissue-mimetic behavior, in situ synchrotron X-ray scattering was measured during uniaxial stretching of bottlebrush- and comb-like graft copolymers with varying densities of poly(dimethyl siloxane) and poly(isobutylene) side chains. In an undeformed state, these copolymers revealed a single interference peak corresponding to the average spacing between the domains of linear A-blocks arranged in a disordered, liquid-like configuration. Under uniaxial stretching, the emergence of a distinct four-spot pattern in the small-angle region indicated the development of long-range order within the material. According to the affine deformation of a cubic lattice, the four-spot pattern’s interference maxima correspond to 110 reflections upon stretching along the [111] axis of the body-centered unit cell. The experimental findings were corroborated by computer simulations of dissipative particle dynamics that confirmed the formation of a bcc domain structure. 
    more » « less
  3. Bottlebrush polymers are complex macromolecules with tunable physical properties dependent on the chemistry and architecture of both the side chains and the backbone. Prior work has demonstrated that bottlebrush polymer additives can be used to control the interfacial properties of blends with linear polymers but has not specifically addressed the effects of bottlebrush side chain microstructures. Here, using a combination of experiments and self-consistent field theory (SCFT) simulations, we investigated the effects of side chain microstructures by comparing the segregation of bottlebrush additives having random copolymer side chains with bottlebrush additives having a mixture of two different homopolymer side chain chemistries. Specifically, we synthesized bottlebrush polymers with either poly(styrene- ran -methyl methacrylate) side chains or with a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA) side chains. The bottlebrush additives were matched in terms of PS and PMMA compositions, and they were blended with linear PS or PMMA chains that ranged in length from shorter to longer than the bottlebrush side chains. Experiments revealed similar behaviors of the two types of bottlebrushes, with a slight preference for mixed side-chain bottlebrushes at the film surface. SCFT simulations were qualitatively consistent with experimental observations, predicting only slight differences in the segregation of bottlebrush additives driven by side chain microstructures. Specifically, these slight differences were driven by the chemistries of the bottlebrush polymer joints and side chain end-groups, which were entropically repelled and attracted to interfaces, respectively. Using SCFT, we also demonstrated that the interfacial behaviors were dominated by entropic effects with high molecular weight linear polymers, leading to enrichment of bottlebrush near interfaces. Surprisingly, the SCFT simulations showed that the chemistry of the joints connecting the bottlebrush backbones and side chains played a more significant role compared with the side chain end groups in affecting differences in surface excess of bottlebrushes with random and mixed side chains. This work provides new insights into the effects of side chain microstructure on segregation of bottlebrush polymer additives. 
    more » « less
  4. Abstract Stimuli-responsive elastic metamaterials augment unique subwavelength features and wave manipulation capabilities with a degree of tunability, which enables them to cut across different time scales and frequency regimes. Here, we present an experimental framework for robust local resonance bandgap control enabled by enhanced magneto-mechanical coupling properties of a magnetorheological elastomer, serving as the resonating stiffness of a metamaterial cell. During the curing process, ferromagnetic particles in the elastomeric matrix are aligned under the effect of an external magnetic field. As a result, particle chains with preferred orientation form along the field direction. The resulting anisotropic behavior significantly boosts the sensitivity of the metamaterial’s elastic modulus to the imposed field during operation, which is then exploited to control the dispersive dynamics and experimentally shift the location and width of the resonance-based bandgap along the frequency axis. Finally, numerical simulations are used to project the performance of the magnetically-tunable metamaterial at stronger magnetic fields and increased levels of material anisotropy, as a blueprint for broader implementations of in situ tunable active metamaterials. 
    more » « less
  5. Abstract The self‐assembly of amphiphilic bottlebrush block copolymers (BCPs), featuring backbones densely grafted with two types of side chains, is less well understood compared to linear BCPs. In particular, the solution self‐assembly of tapered bottlebrush BCPs—cone‐shaped BCPs with hydrophilic or hydrophobic tips—remains unexplored. This study investigates eight tapered and four cylindrical bottlebrush BCPs with varied ratios of hydrophobic polystyrene (PS) and hydrophilic poly(acrylic acid) (PAA) side chains, synthesized via sequential addition of macromonomers using ring‐opening metathesis polymerization (SAM‐ROMP). Self‐assembled nanostructures formed in water were analyzed using cryogenic transmission electron microscopy, small‐angle neutron scattering, and dynamic light scattering. Most BCPs generated multiple nanostructures with surface protrusions, including spherical micelles, cylindrical micelles, and vesicles, alongside transitional forms like ellipsoids and semi‐vesicles. Coarse‐grained molecular dynamics simulations supported the experimental findings, which revealed two distinct self‐assembly pathways. The first involved micelle fusion, producing elliptical and cylindrical aggregates, sometimes forming Y‐junctions. The second pathway featured micelle maturation into semivesicles, which developed into vesicles or large compound vesicles. This work provides the first experimental evidence of vesicle formation via semivesicles in bottlebrush BCPs and demonstrates the significant influence of cone directionality on self‐assembly behavior in these cone‐shaped polymeric amphiphiles. 
    more » « less