skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data Retention Period Disclosures in Privacy Policies
115 privacy policies from the OPP-115 corpus have been re-annotated with the specific data retention periods disclosed, aligned with the GDPR requirements disclosed in Art. 13 (2)(a). Those retention periods have been categorized into the following 6 distinct cases: C0: No data retention period is indicated in the privacy policy/segment. C1: A specific data retention period is indicated (e.g., days, weeks, months...). C2: Indicate that the data will be stored indefinitely. C3: A criterion is determined during which a defined period during which the data will be stored can be understood (e.g., as long as the user has an active account). C4: It is indicated that personal data will be stored for an unspecified period, for fraud prevention, legal or security reasons. C5: It is indicated that personal data will be stored for an unspecified period, for purposes other than fraud prevention, legal, or security. Note: If the privacy policy or segment accounts for more than one case, the case with the highest value was annotated (e.g., if case C2 and case C4 apply, C4 is annotated). Then, the ground truth dataset served as validation for our proposed ChatGPT-based method, the results of which have also been included in this dataset. Columns description: - policy_id: ID of the policy in the OPP-115 dataset - policy_name: Domain of the privacy policy - policy_text: Privacy policy collected at the time of OPP-115 dataset creation - info_type_value: Type of personal data to which data retention refers - retention_period: Period of retention annotated by OPP-115 annotators - actual_case: Our annotated case ranging from C0-C5 - GPT_case: ChatGPT classification of the case identified in the segment - actual_Comply_GDPR: Boolean denoting True if they apparently comply with GDPR (cases C1-C5) or False if not (case C0) - GPT_Comply_GDPR: Boolean denoting True if they apparently comply with GDPR (cases C1-C5) or False if not (case C0) - paragraphs_retention_period: List containing the paragraphs annotated as Data Retention by OPP-115 annotators and our red text describing the relevant information used for our annotation decision  more » « less
Award ID(s):
1914486
PAR ID:
10523126
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
;
Publisher / Repository:
Mendeley Data
Date Published:
Subject(s) / Keyword(s):
Mobile Device Retention Privacy
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Villata, S. (Ed.)
    The European Union’s General Data Protection Regulation (GDPR) has compelled businesses and other organizations to update their privacy policies to state specific information about their data practices. Simultaneously, researchers in natural language processing (NLP) have developed corpora and annotation schemes for extracting salient information from privacy policies, often independently of specific laws. To connect existing NLP research on privacy policies with the GDPR, we introduce a mapping from GDPR provisions to the OPP-115 annotation scheme, which serves as the basis for a growing number of projects to automatically classify privacy policy text. We show that assumptions made in the annotation scheme about the essential topics for a privacy policy reflect many of the same topics that the GDPR requires in these documents. This suggests that OPP-115 continues to be representative of the anatomy of a legally compliant privacy policy, and that the legal assumptions behind it represent the elements of data processing that ought to be disclosed within a policy for transparency. The correspondences we show between OPP-115 and the GDPR suggest the feasibility of bridging existing computational and legal research on privacy policies, benefiting both areas. 
    more » « less
  2. null (Ed.)
    The European Union’s General Data Protection Regulation (GDPR) has compelled businesses and other organizations to update their privacy policies to state specific information about their data practices. Simultaneously, researchers in natural language processing (NLP) have developed corpora and annotation schemes for extracting salient information from privacy policies, often independently of specific laws. To connect existing NLP research on privacy policies with the GDPR, we introduce a mapping from GDPR provisions to the OPP-115 annotation scheme, which serves as the basis for a growing number of projects to automatically classify privacy policy text. We show that assumptions made in the annotation scheme about the essential topics for a privacy policy reflect many of the same topics that the GDPR requires in these documents. This suggests that OPP-115 continues to be representative of the anatomy of a legally compliant privacy policy, and that the legal assumptions behind it represent the elements of data processing that ought to be disclosed within a policy for transparency. The correspondences we show between OPP-115 and the GDPR suggest the feasibility of bridging existing computational and legal research on privacy policies, benefiting both areas. 
    more » « less
  3. The increasing societal concern for consumer information privacy has led to the enforcement of privacy regulations worldwide. In an effort to adhere to privacy regulations such as the General Data Protection Regulation (GDPR), many companies’ privacy policies have become increasingly lengthy and complex. In this study, we adopted the computational design science paradigm to design a novel privacy policy evolution analytics framework to help identify how companies change and present their privacy policies based on privacy regulations. The framework includes a self-attentive annotation system (SAAS) that automatically annotates paragraph-length segments in privacy policies to help stakeholders identify data practices of interest for further investigation. We rigorously evaluated SAAS against state-of-the-art machine learning (ML) and deep learning (DL)-based methods on a well-established privacy policy dataset, OPP-115. SAAS outperformed conventional ML and DL models in terms of F1-score by statistically significant margins. We demonstrate the proposed framework’s practical utility with an in-depth case study of GDPR’s impact on Amazon’s privacy policies. The case study results indicate that Amazon’s post-GDPR privacy policy potentially violates a fundamental principle of GDPR by causing consumers to exert more effort to find information about first-party data collection. Given the increasing importance of consumer information privacy, the proposed framework has important implications for regulators and companies. We discuss several design principles followed by the SAAS that can help guide future design science-based e-commerce, health, and privacy research. 
    more » « less
  4. Data privacy policy requirements are a quickly evolving part of the data management domain. Healthcare (e.g., HIPAA), financial (e.g., GLBA), and general laws such as GDPR or CCPA impose controls on how personal data should be managed. Relational databases do not offer built-in features to support data management features to comply with such laws. As a result, many organizations implement ad-hoc solutions or use third party tools to ensure compliance with privacy policies. However, external compliance framework can conflict with the internal activity in a database (e.g., trigger side-effects or aborted transactions). In our prior work, we introduced a framework that integrates data retention and data purging compliance into the database itself, requiring only the support for triggers and encryption, which are already available in any mainstream database engine. In this demonstration paper, we introduce DBCompliant – a tool that demonstrates how our approach can seamlessly integrate comprehensive policy compliance (defined via SQL queries). Although we use PostgreSQL as our back-end, DBCompliant could be adapted to any other relational database. Finally, our approach imposes low (less than 5%) user query overhead. 
    more » « less
  5. The European General Data Protection Regulation (GDPR) mandates a data controller (e.g., an app developer) to provide all information specified in Articles (Arts.) 13 and 14 to data subjects (e.g., app users) regarding how their data are being processed and what are their rights. While some studies have started to detect the fulfillment of GDPR requirements in a privacy policy, their exploration only focused on a subset of mandatory GDPR requirements. In this paper, our goal is to explore the state of GDPR-completeness violations in mobile apps' privacy policies. To achieve our goal, we design the PolicyChecker framework by taking a rule and semantic role based approach. PolicyChecker automatically detects completeness violations in privacy policies based not only on all mandatory GDPR requirements but also on all if-applicable GDPR requirements that will become mandatory under specific conditions. Using PolicyChecker, we conduct the first large-scale GDPR-completeness violation study on 205,973 privacy policies of Android apps in the UK Google Play store. PolicyChecker identified 163,068 (79.2%) privacy policies containing data collection statements; therefore, such policies are regulated by GDPR requirements. However, the majority (99.3%) of them failed to achieve the GDPR-completeness with at least one unsatisfied requirement; 98.1% of them had at least one unsatisfied mandatory requirement, while 73.0% of them had at least one unsatisfied if-applicable requirement logic chain. We conjecture that controllers' lack of understanding of some GDPR requirements and their poor practices in composing a privacy policy can be the potential major causes behind the GDPR-completeness violations. We further discuss recommendations for app developers to improve the completeness of their apps' privacy policies to provide a more transparent personal data processing environment to users. 
    more » « less