Abstract Lamins are nuclear intermediate filament proteins with diverse functions, ranging from organizing chromatin and regulating gene expression to providing structural support to the nucleus. Mammalian cells express two types of lamins, A-type and B-type, which, despite their similar structure and biochemical properties, exhibit distinct differences in expression, interaction partners, and function. One major difference is that A-type lamins have a significantly larger effect on the mechanical properties of the nucleus, which are crucial for protecting the nucleus from cytoskeletal forces, enabling cell migration through confined spaces, and contributing to cellular mechanotransduction. The molecular mechanism underlying this difference has remained unresolved. Here, we applied custom-developed biophysical and proteomic assays to lamin-deficient cell lines engineered to express specific full-length lamin proteins, lamin truncations, or chimeras combining domains from A- and B-type lamins, to systematically determine their contributions to nuclear mechanics. We found that although all expressed lamins contribute to the biophysical properties of the nuclear interior and confer some mechanical stability to the nuclear envelope, which is sufficient to protect the nuclear envelope from small cell-intrinsic forces and ensure proper positioning of nuclear pores, A-type lamins endow cells with a unique ability to resist large forces on the nucleus. Surprisingly, this effect was conferred through the A-type lamin rod domain, rather than the head or tail domains, which diverge more substantially between A- and B-type lamins and play important roles in lamin network formation. Collectively, our work provides an improved understanding of the distinct functions of different lamins in mammalian cells and may also explain why mutations in the A-type lamin rod domain cause more severe muscle defects in mouse models than other mutations.
more »
« less
Heterologous expression of Dictyostelium discoideum NE81 in mouse embryo fibroblasts reveals conserved mechanoprotective roles of lamins
Lamins are nuclear intermediate filament proteins that are ubiquitously found in metazoan cells, where they contribute to nuclear morphology, stability, and gene expression. Lamin-like sequences have recently been identified in distantly related eukaryotes, but it remains unclear whether these proteins share conserved functions with the lamins found in metazoans. Here, we investigate conserved features between metazoan and amoebozoan lamins using a genetic complementation system to express the Dictyostelium discoideum lamin-like protein NE81 in mammalian cells lacking either specific lamins or all endogenous lamins. We report that NE81 localizes to the nucleus in cells lacking Lamin A/C, and that NE81 expression improves nuclear circularity, reduces nuclear deformability, and prevents nuclear envelope rupture in these cells. However, NE81 did not completely rescue loss of Lamin A/C, and was unable to restore normal distribution of metazoan lamin interactors, such as emerin and nuclear pore complexes, which are frequently displaced in Lamin A/C deficient cells. Collectively, our results indicate that the ability of lamins to modulate the morphology and mechanical properties of nuclei may have been a feature present in the common ancestor of Dictyostelium and animals, whereas other, more specialized interactions may have evolved more recently in metazoan lineages.
more »
« less
- Award ID(s):
- 2022048
- PAR ID:
- 10523272
- Editor(s):
- Discher, Dennis
- Publisher / Repository:
- The American Society of Cell Biology
- Date Published:
- Journal Name:
- Molecular Biology of the Cell
- Volume:
- 35
- Issue:
- 1
- ISSN:
- 1059-1524
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Lamins are intermediate filament proteins that contribute to numerous cellular functions, including nuclear morphology and mechanical stability. The N-terminal head domain of lamin is crucial for higher order filament assembly and function, yet the effects of commonly used N-terminal tags on lamin function remain largely unexplored. Here, we systematically studied the effect of two differently sized tags on lamin A (LaA) function in a mammalian cell model engineered to allow for precise control of expression of tagged lamin proteins. Untagged, FLAG-tagged and GFP-tagged LaA completely rescued nuclear shape defects when expressed at similar levels in lamin A/C-deficient (Lmna–/–) MEFs, and all LaA constructs prevented increased nuclear envelope ruptures in these cells. N-terminal tags, however, altered the nuclear localization of LaA and impaired the ability of LaA to restore nuclear deformability and to recruit emerin to the nuclear membrane in Lmna–/– MEFs. Our finding that tags impede some LaA functions but not others might explain the partial loss of function phenotypes when tagged lamins are expressed in model organisms and should caution researchers using tagged lamins to study the nucleus.more » « less
-
Abstract BackgroundB-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology. ResultsUsing live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains. ConclusionsOur findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease.more » « less
-
Ataxia-telangiectasia mutated (ATM) is one of the three main apical kinases at the crux of DNA damage response and repair in mammalian cells. ATM activates a cascade of downstream effector proteins to regulate DNA repair and cell cycle checkpoints in response to DNA double-strand breaks. While ATM is predominantly known for its role in DNA damage response and repair, new roles of ATM have recently begun to emerge, such as in regulating oxidative stress or metabolic pathways. Here, we report the surprising discovery that ATM inhibition and deletion lead to reduced expression of the nuclear envelope protein lamin A. Lamins are nuclear intermediate filaments that modulate nuclear shape, structure, and stiffness. Accordingly, inhibition or deletion of ATM resulted in increased nuclear deformability and enhanced cell migration through confined spaces, which requires substantial nuclear deformation. These findings point to a novel connection between ATM and lamin A and may have broad implications for cells with ATM mutations—as found in patients suffering from Ataxia Telangiectasia and many human cancers—which could lead to enhanced cell migration and increased metastatic potential.more » « less
-
Two meters of DNA in each of our cells must be protected against many types of damage. Mechanoprotection is increasingly understood to be conferred by the nuclear lamina of intermediate filament proteins, but very different patterns of expression and regulation between different cells and tissues remain a challenge to comprehend and translate into applications. We begin with a tutorial style presentation of “tissue blueprints” of lamin expression including single-cell RNA sequencing in major public datasets. Lamin-A, C profiles appear strikingly similar to those for the mechanosensitive factors Vinculin, Yap1, and Piezo1, whereas datasets for lamin-B1 align with and predict regulation by the cell cycle transcription factor, FOXM1, and further predict poor survival across multiple cancers. Various experiments support the distinction between the lamin types and add mechanistic insight into the mechano-regulation of lamin-A, C by both matrix elasticity and externally imposed tissue strain. Both A- and B-type lamins, nonetheless, protect the nucleus from rupture and damage. Ultimately, for mechanically active tissue constructs and organoids as well as cell therapies, lamin levels require particular attention as they help minimize nuclear damage and defects in a cell cycle.more » « less
An official website of the United States government

