Soil drying and wetting cycles can produce pulses of nitric oxide (NO) and nitrous oxide (N2O) emissions with substantial effects on both regional air quality and Earth’s climate. While pulsed production of N emissions is ubiquitous across ecosystems, the processes governing pulse magnitude and timing remain unclear. We studied the processes producing pulsed NO and N2O emissions at two contrasting drylands, desert and chaparral, where despite the hot and dry conditions known to limit biological processes, some of the highest NO and N2O flux rates have been measured. We measured N2O and NO emissions every 30 min for 24 h after wetting soils with isotopically-enriched nitrate and ammonium solutions to determine production pathways and their timing. Nitrate was reduced to N2O within 15 min of wetting, with emissions exceeding 1000 ng N–N2O m−2 s−1and returning to background levels within four hours, but the pulse magnitude did not increase in proportion to the amount of ammonium or nitrate added. In contrast to N2O, NO was emitted over 24 h and increased in proportion to ammonium addition, exceeding 600 ng N–NO m−2 s−1in desert and chaparral soils. Isotope tracers suggest that both ammonia oxidation and nitrate reduction produced NO. Taken together, our measurements demonstrate that nitrate can be reduced within minutes of wetting summer-dry desert soils to produce large N2O emission pulses and that multiple processes contribute to long-lasting NO emissions. These mechanisms represent substantial pathways of ecosystem N loss that also contribute to regional air quality and global climate dynamics.
This content will become publicly available on December 8, 2024
Soils are the largest source of atmospheric nitrous oxide (N2O), a powerful greenhouse gas. Dry soils rarely harbor anoxic conditions to favor denitrification, the predominant N2O-producing process, yet, among the largest N2O emissions have been measured after wetting summer-dry desert soils, raising the question: Can denitrifiers endure extreme drought and produce N2O immediately after rainfall? Using isotopic and molecular approaches in a California desert, we found that denitrifiers produced N2O within 15 minutes of wetting dry soils (site preference = 12.8 ± 3.92 per mil, δ15Nbulk= 18.6 ± 11.1 per mil). Consistent with this finding, we detected nitrate-reducing transcripts in dry soils and found that inhibiting microbial activity decreased N2O emissions by 59%. Our results suggest that despite extreme environmental conditions—months without precipitation, soil temperatures of ≥40°C, and gravimetric soil water content of <1%—bacterial denitrifiers can account for most of the N2O emitted when dry soils are wetted.
more » « less- Award ID(s):
- 1916622
- NSF-PAR ID:
- 10523275
- Publisher / Repository:
- Science Advances
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 9
- Issue:
- 49
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Warming‐induced changes in precipitation regimes, coupled with anthropogenically enhanced nitrogen (N) deposition, are likely to increase the prevalence, duration, and magnitude of soil respiration pulses following wetting via interactions among temperature and carbon (C) and N availability. Quantifying the importance of these interactive controls on soil respiration is a key challenge as pulses can be large terrestrial sources of atmospheric carbon dioxide (CO2) over comparatively short timescales. Using an automated sensor system, we measured soil CO2flux dynamics in the Colorado Desert—a system characterized by pronounced transitions from dry‐to‐wet soil conditions—through a multi‐year series of experimental wetting campaigns. Experimental manipulations included combinations of C and N additions across a range of ambient temperatures and across five sites varying in atmospheric N deposition. We found soil CO2pulses following wetting were highly predictable from peak instantaneous CO2flux measurements. CO2pulses consistently increased with temperature, and temperature at time of wetting positively correlated to CO2pulse magnitude. Experimentally adding N along the N deposition gradient generated contrasting pulse responses: adding N increased CO2pulses in low N deposition sites, whereas adding N decreased CO2pulses in high N deposition sites. At a low N deposition site, simultaneous additions of C and N during wetting led to the highest observed soil CO2fluxes reported globally at 299.5 μmol CO2 m−2 s−1. Our results suggest that soils have the capacity to emit high amounts of CO2within small timeframes following infrequent wetting, and pulse sizes reflect a non‐linear combination of soil resource and temperature interactions. Importantly, the largest soil CO2emissions occurred when multiple resources were amended simultaneously in historically resource‐limited desert soils, pointing to regions experiencing simultaneous effects of desertification and urbanization as key locations in future global C balance.
-
Abstract In seasonally dry ecosystems, which are common in sub‐Saharan Africa, precipitation after dry periods can cause large pulses of nitrous oxide (N2O), a greenhouse gas, and of nitric oxide (NO), a precursor to tropospheric ozone pollution. Agricultural practices can change soil characteristics, affecting trace N gas emissions. To evaluate the effects of land use on trace gas pulses at the start of the rainy season, we conducted laboratory measurements of N2O and NO fluxes from soils collected from four pairs of agricultural and natural savannah sites across the Sudano‐Sahelian zone. We also conducted in situ wetting experiments, measuring NO fluxes from fallow sandy soils in Tanzania and NO and N2O fluxes from clayey soils in Kenya with different histories of fertilizer use. In incubation studies, NO increased by a factor of 7 to 25 following wetting, and N2O fluxes shifted from negative to positive; cumulative NO fluxes were an order of magnitude larger than cumulative N2O fluxes. In Kenya and Tanzania, NO increased by 1 to 2 orders of magnitude after wetting, and N2O increased by a factor of roughly 5 to 10. Cumulative NO fluxes ranged from 87 to 115 g NO‐N ha−1across both countries—a substantial proportion of annual emissions—compared to roughly 1 g N2O‐N in Kenya. There were no effects of land use or fertilization history on the magnitude of NO or N2O pulses, though land use may have been confounded with differences in soil texture potentially limiting the ability to detect land use effects.
-
Abstract Limited information on greenhouse gas emissions from tropical dry forest soils still hinders the assessment of the sources/sinks from this ecosystem and their contribution at global scales. Particularly, rewetting events after the dry season can have a significant effect on soil biogeochemical processes and associated exchange of greenhouse gases. This study evaluated the temporal variation and annual fluxes of CO2, N2O, and CH4from soils in a tropical dry forest successional gradient. After a prolonged drought of 5 months, large emissions pulses of CO2and N2O were observed at all sites following first rain events, caused by the “Birch effect,” with a significant effect on the net ecosystem exchange and the annual emissions budget. Annual CO2emissions were greatest for the young forest (8,556 kg C ha−1yr−1) followed by the older forest (7,420 kg C ha−1yr−1) and the abandoned pasture (7,224 kg C ha−1yr−1). Annual emissions of N2O were greatest for the forest sites (0.39 and 0.43 kg N ha−1yr−1) and least in the abandoned pasture (0.09 kg N ha−1yr−1). CH4uptake was greatest in the older forest (−2.61 kg C ha−1yr−1) followed by the abandoned pasture (−0.69 kg C ha−1yr−1) and the young forest (−0.58 kg C ha−1yr−1). Fluxes were mainly influenced by soil moisture, microbial biomass, and soil nitrate and ammonium concentrations. Annual CO2and N2O soil fluxes of tropical dry forests in this study and others from the literature were much lower than the annual fluxes in wetter tropical forests. Conversely, tropical dry forests and abandoned pastures are on average stronger sinks for CH4than wetter tropical forests.
-
Abstract The atmospheric concentration of nitrous oxide (N2O) has increased by 23% since the pre‐industrial era, which substantially destructed the stratospheric ozone layer and changed the global climate. However, it remains uncertain about the reasons behind the increase and the spatiotemporal patterns of soil N2O emissions, a primary biogenic source. Here, we used an integrative land ecosystem model, Dynamic Land Ecosystem Model (DLEM), to quantify direct (i.e., emitted from local soil) and indirect (i.e., emissions related to local practices but occurring elsewhere) N2O emissions in the contiguous United States during 1900–2019. Newly developed geospatial data of land‐use history and crop‐specific agricultural management practices were used to force DLEM at a spatial resolution of 5 arc‐min by 5 arc‐min. The model simulation indicates that the U.S. soil N2O emissions totaled 0.97 ± 0.06 Tg N year−1during the 2010s, with 94% and 6% from direct and indirect emissions, respectively. Hot spots of soil N2O emission are found in the US Corn Belt and Rice Belt. We find a threefold increase in total soil N2O emission in the United States since 1900, 74% of which is from agricultural soil emissions, increasing by 12 times from 0.04 Tg N year−1in the 1900s to 0.51 Tg N year−1in the 2010s. More than 90% of soil N2O emission increase in agricultural soils is attributed to human land‐use change and agricultural management practices, while increases in N deposition and climate warming are the dominant drivers for N2O emission increase from natural soils. Across the cropped acres, corn production stands out with a large amount of fertilizer consumption and high‐emission factors, responsible for nearly two‐thirds of direct agricultural soil N2O emission increase since 1900. Our study suggests a large N2O mitigation potential in cropland and the importance of exploring crop‐specific mitigation strategies and prioritizing management alternatives for targeted crop types.