While node semantics have been extensively explored in social networks, little research attention has been paid to profile edge semantics, i.e., social relations. Ideal edge semantics should not only show that two users are connected, but also why they know each other and what they share in common. However, relations in social networks are often hard to profile, due to noisy multi-modal signals and limited user-generated ground-truth labels. In this work, we aim to develop a unified and principled framework that can profile user relations as edge semantics in social networks by integrating multi-modal signals in the presence of noisy and incomplete data. Our framework is also flexible towards limited or missing supervision. Specifically, we assume a latent distribution of multiple relations underlying each user link, and learn them with multi-modal graph edge variational autoencoders. We encode the network data with a graph convolutional network, and decode arbitrary signals with multiple reconstruction networks. Extensive experiments and case studies on two public DBLP author networks and two internal LinkedIn member networks demonstrate the superior effectiveness and efficiency of our proposed model.
more »
« less
Network Analytics Enabled by Generating a Pool of Network Variants from Noisy Data
Mapping network nodes and edges to communities and network functions is crucial to gaining a higher level of understanding of the network structure and functions. Such mappings are particularly challenging to design for covert social networks, which intentionally hide their structure and functions to protect important members from attacks or arrests. Here, we focus on correctly inferring the structures and functions of such networks, but our methodology can be broadly applied. Without the ground truth, knowledge about the allocation of nodes to communities and network functions, no single network based on the noisy data can represent all plausible communities and functions of the true underlying network. To address this limitation, we apply a generative model that randomly distorts the original network based on the noisy data, generating a pool of statistically equivalent networks. Each unique generated network is recorded, while each duplicate of the already recorded network just increases the repetition count of that network. We treat each such network as a variant of the ground truth with the probability of arising in the real world approximated by the ratio of the count of this network’s duplicates plus one to the total number of all generated networks. Communities of variants with frequently occurring duplicates contain persistent patterns shared by their structures. Using Shannon entropy, we can find a variant that minimizes the uncertainty for operations planned on the network. Repeatedly generating new pools of networks from the best network of the previous step for several steps lowers the entropy of the best new variant. If the entropy is too high, the network operators can identify nodes, the monitoring of which can achieve the most significant reduction in entropy. Finally, we also present a heuristic for constructing a new variant, which is not randomly generated but has the lowest expected cost of operating on the distorted mappings of network nodes to communities and functions caused by noisy data.
more »
« less
- Award ID(s):
- 2214216
- PAR ID:
- 10523316
- Editor(s):
- Knuth, Kevin; Drozdz, Stanislaw
- Publisher / Repository:
- MDPI, Basel, Switzerland.
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 25
- Issue:
- 8
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 1118
- Subject(s) / Keyword(s):
- functional and structural uncertainty noisy data covert networks Bernoulli weighted random network generator
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Consider a network of agents that all want to guess the correct value of some ground truth state. In a sequential order, each agent makes its decision using a single private signal which has a constant probability of error, as well as observations of actions from its network neighbors earlier in the order. We are interested in enabling network-wide asymptotic truth learning – that in a network of n agents, almost all agents make a correct prediction with probability approaching one as n goes to infinity. In this paper we study both random orderings and carefully crafted decision orders with respect to the graph topology as well as sufficient or necessary conditions for a graph to support such a good ordering. We first show that on a sparse graph of average constant degree with a random ordering asymptotic truth learning does not happen. We then show a rather modest sufficient condition to enable asymptotic truth learning. With the help of this condition we characterize graphs generated from the Erdös Rényi model and preferential attachment model. In an Erdös Rényi graph, unless the graph is super sparse (with O(n) edges) or super dense (nearly a complete graph), there exists a decision ordering that supports asymptotic truth learning. Similarly, any preferential attachment network with a constant number of edges per node can achieve asymptotic truth learning under a carefully designed ordering but not under either a random ordering nor the arrival order. We also evaluated a variant of the decision ordering on different network topologies and demonstrated clear effectiveness in improving truth learning over random orderings.more » « less
-
Singh, Mona (Ed.)Microbial associations are characterized by both direct and indirect interactions between the constituent taxa in a microbial community, and play an important role in determining the structure, organization, and function of the community. Microbial associations can be represented using a weighted graph (microbial network) whose nodes represent taxa and edges represent pairwise associations. A microbial network is typically inferred from a sample-taxa matrix that is obtained by sequencing multiple biological samples and identifying the taxa counts in each sample. However, it is known that microbial associations are impacted by environmental and/or host factors. Thus, a sample-taxa matrix generated in a microbiome study involving a wide range of values for the environmental and/or clinical metadata variables may in fact be associated with more than one microbial network. Here we consider the problem of inferring multiple microbial networks from a given sample-taxa count matrix. Each sample is a count vector assumed to be generated by a mixture model consisting of component distributions that are Multivariate Poisson Log-Normal. We present a variational Expectation Maximization algorithm for the model selection problem to infer the correct number of components of this mixture model. Our approach involves reframing the mixture model as a latent variable model, treating only the mixing coefficients as parameters, and subsequently approximating the marginal likelihood using an evidence lower bound framework. Our algorithm is evaluated on a large simulated dataset generated using a collection of different graph structures (band, hub, cluster, random, and scale-free).more » « less
-
Althouse, Benjamin Muir (Ed.)Disease epidemic outbreaks on human metapopulation networks are often driven by a small number of superspreader nodes, which are primarily responsible for spreading the disease throughout the network. Superspreader nodes typically are characterized either by their locations within the network, by their degree of connectivity and centrality, or by their habitat suitability for the disease, described by their reproduction number ( R ). Here we introduce a model that considers simultaneously the effects of network properties and R on superspreaders, as opposed to previous research which considered each factor separately. This type of model is applicable to diseases for which habitat suitability varies by climate or land cover, and for direct transmitted diseases for which population density and mitigation practices influences R . We present analytical models that quantify the superspreader capacity of a population node by two measures: probability-dependent superspreader capacity, the expected number of neighboring nodes to which the node in consideration will randomly spread the disease per epidemic generation, and time-dependent superspreader capacity, the rate at which the node spreads the disease to each of its neighbors. We validate our analytical models with a Monte Carlo analysis of repeated stochastic Susceptible-Infected-Recovered (SIR) simulations on randomly generated human population networks, and we use a random forest statistical model to relate superspreader risk to connectivity, R , centrality, clustering, and diffusion. We demonstrate that either degree of connectivity or R above a certain threshold are sufficient conditions for a node to have a moderate superspreader risk factor, but both are necessary for a node to have a high-risk factor. The statistical model presented in this article can be used to predict the location of superspreader events in future epidemics, and to predict the effectiveness of mitigation strategies that seek to reduce the value of R , alter host movements, or both.more » « less
-
Community detection, which focuses on clustering nodes or detecting communities in (mostly) a single network, is a problem of considerable practical interest and has received a great deal of attention in the research community. While being able to cluster within a network is important, there are emerging needs to be able to \emph{cluster multiple networks}. This is largely motivated by the routine collection of network data that are generated from potentially different populations. These networks may or may not have node correspondence. When node correspondence is present, we cluster networks by summarizing a network by its graphon estimate, whereas when node correspondence is not present, we propose a novel solution for clustering such networks by associating a computationally feasible feature vector to each network based on trace of powers of the adjacency matrix. We illustrate our methods using both simulated and real data sets, and theoretical justifications are provided in terms of consistency.more » « less
An official website of the United States government

