The electrical properties of the entropy stabilized oxides: Zr6Nb2O17, Zr6Ta2O17, Hf6Nb2O17and Hf6Ta2O17were characterized. The results and the electrical properties of the products (i.e. ZrO2, HfO2, Nb2O5and Ta2O5) led us to hypothesize the A6B2O17family is a series of mixed ionic-electronic conductors. Conductivity measurements in varying oxygen partial pressure were performed on A6Nb2O17and A6Ta2O17.The results indicate that electrons are involved in conduction in A6Nb2O17while holes play a role in conduction of A6Ta2O17. Between 900 °C–950 °C, the charge transport in the A6B2O17system increases in Ar atmosphere. A combination of DTA/DSC and in situ high temperature X-ray diffraction was performed to identify a potential mechanism for this increase. In-situ high temperature X-ray diffraction in Ar does not show any phase transformation. Based on this, it is hypothesized that a change in the oxygen sub-lattice is the cause for the shift in high temperature conduction above 900 °C–950 °C. This could be:(i)Nb(Ta)4+- oxygen vacancy associate formation/dissociation,(ii)formation of oxygen/oxygen vacancy complexes(iii)ordering/disordering of oxygen vacancies and/or(iv)oxygen-based superstructure commensurate or incommensurate transitions. In-situ high temperature neutron diffraction up to 1050 °C is required to help elucidate the origins of this large increase in conductivity. 
                        more » 
                        « less   
                    
                            
                            Two-dimensional Niobium Carbide MXene, Nb 2 CT x : intrinsic and photoexcited carrier dynamics
                        
                    
    
            Garnering attention for high conductivity, nonlinear optical properties, and more, MXenes are water-processable 2D materials that are considered candidates for applications in electromagnetic interference shielding, optoelectronic and photonic devices among others. Herein we investigate the intrinsic and photoexcited conductivity in Nb 2 CT x, a MXene with reported high photothermal conversion efficiency. DFT calculations show that hydroxyl and/or fluorine-terminated or is metallic, in agreement with THz spectroscopy, which reveals the presence of free charge carriers that are highly localized over mesoscopic length scales. Photoexcitation of Nb 2 CT x, known to result in rapid heating of the crystal lattice, is found to produce additional free carriers and a transient enhancement of photoconductivity. Most photoexcited carriers decay over the sub-picosecond time scales while a small fraction remain for much longer, sub-nanoseconds, times. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2021871
- PAR ID:
- 10523448
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-3660-3
- Page Range / eLocation ID:
- 1 to 2
- Subject(s) / Keyword(s):
- Heating systems Spectroscopy Lattices Nonlinear optical devices Optical materials Photoconductivity Transient analysis
- Format(s):
- Medium: X
- Location:
- Montreal, QC, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Gate‐/wavelength‐dependent scanning photocurrent measurements of black phosphorous (BP)–MoS2heterojunctions have shown that the Schottky barrier at the MoS2–metal interface plays an important role in the photoresponse dynamics of the heterojunction. When the Fermi level is close to the conduction band of MoS2, photoexcited carriers can tunnel through the narrow depletion region at the MoS2–metal interface, leading to a short response time of 13 µs regardless of the incident laser wavelength. This response speed is comparable or better than that of other few‐layer BP–MoS2heterojunctions. Conversely, when the MoS2channel is in the off‐state, the resulting sizeable Schottky barrier and depletion width make it difficult for photoexcited carriers to overcome the barrier. This significantly delays the carrier transit time and thus the photoresponse speed, leading to a wavelength‐dependent response time since the photoexcited carriers induced by short wavelength photons have a higher probability to overcome the Schottky barrier at the MoS2–metal interface than long wavelength photons. These studies not only shed light on the fundamental understanding of photoresponse dynamics in BP–MoS2heterojunctions, but also open new avenues for engineering the interfaces between 2D materials and metal contacts to reduce the response time of 2D optoelectronics.more » « less
- 
            Germanium sulfide (GeS) and germanium selenide (GeSe) are layered 2D van der Waals materials that belong to a family of group-IV monochalcogenides. These semiconductors have high carrier mobilities and moderate band gaps in the near infrared. Additionally, we have demonstrated that above gap photoexcitation results in ultrafast surface photocurrents and emission of THz pulses due to a spontaneous ferroelectric polarization that breaks inversion symmetry in the monolayer. Beyond the sub-picosecond time scales of shift currents, photoexcited carriers in both materials result in long-lived transient conductivity. We find that 800 nm excitation results in longer lived free photocarriers, persisting for hundreds of picoseconds to several nanoseconds, compared to tens to hundreds of picoseconds lifetimes for 400 nm excitation. Here, we report on tailoring the free photoexcited carrier lifetimes by intercalation of zero-valent Cu into the van der Waals gaps of GeS and GeSe. Density functional theory calculations predict that Cu atoms introduce mid-gap states. We demonstrate that intercalating only ∼3 atomic % of zero-valent Cu reduces the carrier lifetime by as much as two-to-four-fold, raising the prospects of these materials being used for high-speed optoelectronics.more » « less
- 
            Correlating electronic properties with M-site composition in solid solution Ti y Nb 2- y CT x MXenesAbstract High electrical conductivity is desired in MXene films for applications such as electromagnetic interference shielding, antennas, and electrodes for electrochemical energy storage and conversion applications. Due to the acid etching-based synthesis method, it is challenging to deconvolute the relative importance that factors such as chemical composition and flake size contribute to resistivity. To understand the intrinsic and extrinsic contributions to the macroscopic electronic transport properties, a systematic study controlling compositional and structural parameters was conducted with eight solid solutions in the Ti y Nb 2− y CT x system. In particular, we investigated the different roles played by metal (M)-site composition, flake size, and d -spacing on macroscopic transport. Hard x-ray photoemission spectroscopy and spectroscopic ellipsometry revealed changes to electronic structure induced by the M-site alloying. Consistent with the spectroscopic results, the low- and room-temperature conductivities and effective carrier mobility are correlated with the Ti content, while the impact of flake size and d -spacing is most prominent in low-temperature transport. The results provide guidance for designing and engineering MXenes with a wide range of conductivities.more » « less
- 
            Abstract Workbench-size particle accelerators, enabled by Nb3Sn-based superconducting radio-frequency (SRF) cavities, hold the potential of driving scientific discovery by offering a widely accessible and affordable source of high-energy electrons and x-rays. Thin-film Nb3Sn RF superconductors with high quality factors, high operation temperatures, and high-field potentials are critical for these devices. However, surface roughness, non-stoichiometry, and impurities in Nb3Sn deposited by conventional Sn-vapor diffusion prevent them from reaching their theoretical capabilities. Here we demonstrate a seed-free electrochemical synthesis that pushes the limit of chemical and physical properties in Nb3Sn. Utilization of electrochemical Sn pre-deposits reduces the roughness of converted Nb3Sn by five times compared to typical vapor-diffused Nb3Sn. Quantitative mappings using chemical and atomic probes confirm improved stoichiometry and minimized impurity concentrations in electrochemically synthesized Nb3Sn. We have successfully applied this Nb3Sn to the large-scale 1.3 GHz SRF cavity and demonstrated ultra-low BCS surface resistances at multiple operation temperatures, notably lower than vapor-diffused cavities. Our smooth, homogeneous, high-purity Nb3Sn provides the route toward high efficiency and high fields for SRF applications under helium-free cryogenic operations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    