Abstract In 1967 G.G. Simpson described three partial mandibles from early Miocene deposits in Kenya that he interpreted as belonging to a new strepsirrhine primate,Propotto. This interpretation was quickly challenged, with the assertion thatPropottowas not a primate, but rather a pteropodid fruit bat. The latter interpretation has not been questioned for almost half a century. Here we re-evaluate the affinities ofPropotto, drawing upon diverse lines of evidence to establish that this strange mammal is a strepsirrhine primate as originally suggested by Simpson. Moreover, our phylogenetic analyses support the recognition ofPropotto, together with late EocenePlesiopithecusfrom Egypt, as African stem chiromyiform lemurs that are exclusively related to the extant aye-aye (Daubentonia) from Madagascar. Our results challenge the long-held view that all lemurs are descended from a single ancient colonization of Madagascar, and present an intriguing alternative scenario in which two lemur lineages dispersed from Africa to Madagascar independently, possibly during the later Cenozoic. 
                        more » 
                        « less   
                    
                            
                            The Epic Journey of Primates: Building a New Exhibit and Tour at the Duke Lemur Center Museum of Natural History
                        
                    
    
            The evolutionary journey of primates is complex, as lineages disperse between continents and adapt to new ecosystems. The fossil collection at the Duke Lemur Center (DLC) is well positioned to tell this story using primate specimens from the Paleogene of North America and Africa, and the Neogene of Africa, South America, and Madagascar. Founded in 1977, the collection was primarily only accessible – and interpretable – to specialized researchers. Visitors and students unfamiliar with fragmentary fossils and obscure taxonomy faced the daunting task of keeping track of the primate journey while following staff through cabinets and drawers. This contrasted with significant education and outreach efforts at the DLC’s main campus, where noninvasive research on the colony of over 200 living lemurs was accessible to the public through tours, interpretive exhibits, and classroom outreach. Our goal was to work together with the DLC education team to fabricate an exhibit that helped visitors access our Big Idea: Humans and Lemurs Share an Evolutionary History That Spans the Globe. The exhibit space is relatively small and the taxa and time periods are unfamiliar to most visitors. We designed color-coding and symbols that are consistent throughout the exhibit and collection spaces to create a layered experience for visitors. A visit can focus on primate adaptations, ecological niches, plate tectonics, or the geological timescale – all science curriculum goals for different grade levels in North Carolina. The exhibit is also physically layered, with modern primate diversity at eye-level accompanied by infographics that summarize the anatomical distinctions between major clades. Displayed below modern specimens are fossil specimens, demonstrating how fossils are used to understand modern biodiversity and vice versa. This structure is disrupted in the Madagascar section, where subfossil lemur taxa are displayed alongside osteological specimens, emphasizing the recent extinction of Malagasy megafauna. This reinforces the DLC’s larger mission to understand and conserve remaining biodiversity. Exhibit materials were designed with the explicit goal of making them available for collaboration with international partners. The team trained volunteer docents to help visitors access the space, and the exhibit opened to visitors in May 2023. Visitors can provide feedback through a standardized form so we can evaluate exhibit materials and revise them in response to engagement. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2023087
- PAR ID:
- 10523477
- Publisher / Repository:
- Society of Vertebrate Paleontology
- Date Published:
- Subject(s) / Keyword(s):
- Outreach Exhibit General Public Fossil Primate Evolution
- Format(s):
- Medium: X
- Location:
- Annual Meeting of the Society of Vertebrate Paleontology in Cincinnati, Ohio
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The dwarf lemurs (Cheirogaleusspp.) of Madagascar are the only obligate hibernators among primates. Despite century‐old field accounts of seasonal lethargy, and more recent evidence of hibernation in the western fat‐tailed dwarf lemur (Cheirogaleus medius), inducing hibernation in captivity remained elusive for decades. This included the Duke Lemur Center (DLC), which maintains fat‐tailed dwarf lemurs and has produced sporadic research on reproduction and metabolism. With cumulative knowledge from the field, a newly robust colony, and better infrastructure, we recently induced hibernation in DLC dwarf lemurs. We describe two follow‐up experiments in subsequent years. First, we show that dwarf lemurs under stable cold conditions (13°C) with available food continued to eat daily, expressed shallower and shorter torpor bouts, and had a modified gut microbiome compared to peers without food. Second, we demonstrate that dwarf lemurs under fluctuating temperatures (12–30°C) can passively rewarm daily, which was associated with altered patterns of fat depletion and reduced oxidative stress. Despite the limitations of working with endangered primates, we highlight the promise of studying hibernation in captive dwarf lemurs. Follow‐up studies on genomics and epigenetics, metabolism, and endocrinology could have relevance across multidisciplinary fields, from biomedicine to evolutionary biology, and conservation.more » « less
- 
            The overuse of man-made antibiotics has facilitated the global propagation of antibiotic resistance genes in animals, across natural and anthropogenically disturbed environments. Although antibiotic treatment is the most well-studied route by which resistance genes can develop and spread within host-associated microbiota, resistomes also can be acquired or enriched via more indirect routes, such as via transmission between hosts or via contact with antibiotic-contaminated matter within the environment. Relatively little is known about the impacts of anthropogenic disturbance on reservoirs of resistance genes in wildlife and their environments. We therefore tested for (a) antibiotic resistance genes in primate hosts experiencing different severities and types of anthropogenic disturbance (i.e., non-wildlife animal presence, human presence, direct human contact, and antibiotic treatment), and (b) covariation between host-associated and environmental resistomes. We used shotgun metagenomic sequencing of ring-tailed lemur ( Lemur catta ) gut resistomes and associated soil resistomes sampled from up to 10 sites: seven in the wilderness of Madagascar and three in captivity in Madagascar or the United States. We found that, compared to wild lemurs, captive lemurs harbored greater abundances of resistance genes, but not necessarily more diverse resistomes. Abundances of resistance genes were positively correlated with our assessments of anthropogenic disturbance, a pattern that was robust across all ten lemur populations. The composition of lemur resistomes was site-specific and the types of resistance genes reflected antibiotic usage in the country of origin, such as vancomycin use in Madagascar. We found support for multiple routes of ARG enrichment (e.g., via human contact, antibiotic treatment, and environmental acquisition) that differed across lemur populations, but could result in similar degrees of enrichment. Soil resistomes varied across natural habitats in Madagascar and, at sites with greater anthropogenic disturbance, lemurs and soil resistomes covaried. As one of the broadest, single-species investigations of wildlife resistomes to date, we show that the transmission and enrichment of antibiotic resistance genes varies across environments, thereby adding to the mounting evidence that the resistance crisis extends outside of traditional clinical settings.more » « less
- 
            A new fossil site in a previously unexplored part of western Madagascar (the Beanka Protected Area) has yielded remains of many recently extinct vertebrates, including giant lemurs (Babakotia radofilai, Palaeopropithecus kelyus, Pachylemur sp., and Archaeolemur edwardsi), carnivores (Cryptoprocta spelea), the aardvark-like Plesiorycteropus sp., and giant ground cuckoos (Coua). Many of these represent considerable range extensions. Extant species that were extirpated from the region (e.g., Prolemur simus) are also present. Calibrated radiocarbon ages for 10 bones from extinct primates span the last three millennia. The largely undisturbed taphonomy of bone deposits supports the interpretation that many specimens fell in from a rock ledge above the entrance. Some primates and other mammals may have been prey items of avian predators, but human predation is also evident. Strontium isotope ratios (87Sr/86Sr) suggest that fossils were local to the area. Pottery sherds and bones of extinct and extant vertebrates with cut and chop marks indicate human activity in previous centuries. Scarcity of charcoal and human artifacts suggests only occasional visitation to the site by humans. The fossil assemblage from this site is unusual in that, while it contains many sloth lemurs, it lacks ratites, hippopotami, and crocodiles typical of nearly all other Holocene subfossil sites on Madagascar.more » « less
- 
            The highest species richness and ecological diversity of extant snakes are in the tropics, primarily in South Asia and Central and South America. Tropical Africa has relatively lower richness and less diversity, but the evolution of tropical herpetofaunas, and the factors governing diversification through time at continental scales are poorly understood due to an understudied fossil record. The ecologies and geographic distributions of aniliid and uropeltoid snakes are examples. Modern species constitute either a grade or clade of fossorial, primarily wet forest taxa from South America and South Asia. Their distributions have historically been interpreted as Gondwanan vicariance following the isolation of Africa in the Early Cretaceous, but a definitive fossil record for these snakes is depauperate. Field research in the early Miocene (approx. 19 Mya) Tinderet sequence of western Kenya has produced precloacal vertebrae of an aniliid snake from multiple localities. Specimens possess vertebral apomorphies shared with extant South American Anilius scytale, including the morphology of the neural spine and prezygapophyseal angle. Combined with additional fossils from the Eocene of North Africa and Middle Miocene of Kenya, the Tinderet records demonstrate an unambiguous past record of an extant neotropical snake lineage in Africa and falsify previous vicariance hypotheses. Recent stable isotopic and palynological studies of Neogene eastern African fossil localities have indicated heterogenous environments, including C4 grasses and wood- to scrubland, associated with vertebrate faunas. Comparing climate parameters of habitats for extant Anilius and uropeltoid snakes as ecological analogues to the Tinderet snake with modern ecosystems equivalent to those reconstructed for the eastern African early Miocene demonstrates only limited overlap in precipitation and temperature values. This discord indicates either greater environmental heterogeneity than reconstructed for the early Miocene of eastern Africa, or a greater range of habitat variability in aniliid snakes than observed in extant Anilius.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    