Of the myriad viruses, very few have been shown to be capable of self- assembly in vitro from purified components into infectious virus particles. One of these is Cowpea Chlorotic Mottle Virus (CCMV), an unenveloped spherical plant virus whose capsid self-assembles around its RNA genome without a packaging signal. While heterologous RNA, not just cognate viral RNA, can be packaged into individual CCMV virus-like particles (VLPs), the RNA needs to fall within a certain range of lengths. If it is too short, it is packaged into particles smaller than wild type, or with two or more RNAs per capsid. If the RNA is too long, multiple capsids assemble around one RNA, and the RNA associated with these multiplet structures is not as RNase resistant. Further, as shown in the present work, 4200 nt appears to be the limiting length of RNA that can be packaged into single RNase-resistant CCMV VLPs. We explore the extent to which “overlong” RNA can be packaged more efficiently upon the addition of spermine, a polyvalent cation whose increasing concentration has been shown to compactify RNA. Finally, we show that the capsid protein of Brome Mosaic Virus (BMV), a bromovirus closely related to CCMV, also gives rise to multiplets when it is self-assembled with the same “overlong” RNA constructs, but with different distributions of multiplets.
more »
« less
In Vivo Delivery of Spherical and Cylindrical In Vitro Reconstituted Virus-like Particles Containing the Same Self-Amplifying mRNA
The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles(VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chloroticmottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying- mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.
more »
« less
- PAR ID:
- 10523495
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Molecular Pharmaceutics
- Volume:
- 21
- Issue:
- 6
- ISSN:
- 1543-8384
- Page Range / eLocation ID:
- 2727 to 2739
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The COVID-19 pandemic highlights the opportunity for mRNA vaccines and their nanotechnology carriers to make an impact as a countermeasure to infectious disease. As alternative to the synthetic lipid nanoparticles or mammalian viruses, we developed a tobacco mosaic virus (TMV)-based mRNA vaccine delivery platform. Specifically, purified coat protein from TMV was used to package a self-amplifying Nodamura replicon expressing the receptor binding domain (RBD) from the Omicron strain of SARS-CoV-2. The replicon construct contains the origin of assembly sequence from the tobacco mosaic virus (TMV) for encapsulation and mRNA stabilization. The nanoparticle vaccine was obtained through in vitro assembly using purified TMV coat proteins and in vitro transcribed mRNA cassettes. Cell assays confirmed delivery of self-amplifying mRNA vaccine, amplification of the transgene and expression of the target protein, RBD, in mammalian cells. Immunization of mice yielded RBDspecific IgG antibodies that demonstrated neutralization of SARS-CoV-2 using an in vitro neutralization assay. The TMV platform nanotechnology does not require ultralow freezers for storage or distribution; and the in vitro assembly method provide ‘plug-and-play’ to adapt the vaccine formulation rapidly as new strains or diseases emerge. Finally, opportunity exists to produce and self-assemble the vaccine candidate in plants through molecular farming techniques, which may allow production in the region-for the region and could make a contribution to less resourced areas of the world.more » « less
-
Tessier, Peter Kane (Ed.)Virus-like particles (VLPs) are self-assembling protein nanoparticles that have great promise as vectors for drug delivery. VLPs are derived from viruses but retain none of their infection or replication capabilities. These protein particles have defined surface chemistries, uniform sizes, and stability properties that make them attractive starting points for drug-delivery scaffolds. Here, we review recent advances in tailoring VLPs for drug-delivery applications, including VLP platform engineering approaches as well as methods for cargo loading, activation, and release. Finally, we highlight several successes using VLPs for drug delivery in model systems.more » « less
-
The Nonmonotonic Dose Dependence of Protein Expression in Cells Transfected with Self-Amplifying RNASelf-amplifying (sa) RNA molecules—“replicons”—derived from the genomes of positive-sense RNA viruses are receiving increasing attention as gene and vaccine delivery vehicles. This is because mRNA forms of genes of interest can be incorporated into them and strongly amplified, thereby enhancing target protein expression. In this report, we demonstrate a nonmonotonic dependence of protein expression on the mass of transfected replicon, in contrast to the usual, monotonic case of non-saRNA transfections. We lipotransfected a variety of cell lines with increasing masses of enhanced yellow fluorescent protein (eYFP) as a reporter gene in sa form and found that there is a “sweet spot” at which protein expression and cell viability are optimum. To control the varying mass of transfected replicon RNA for a given mass of Lipofectamine, the replicons were mixed with a “carrier” RNA that is neither replicated nor translated; the total mass of transfected RNA was kept constant while increasing the fraction of the replicon from zero to one. Fluorescence microscopy studies showed that the optimum protein expression and cell viability are achieved for replicon fractions as small as 1/10 of the total transfected RNA, and these results were quantified by a systematic series of flow cytometry measurements.more » « less
-
The coat proteins (CPs) of single-stranded RNA bacteriophages (ssRNA phages) directly assemble around the genomic RNA (gRNA) to form a near-icosahedral capsid with a single maturation protein (Mat) that binds the gRNA and interacts with the retractile pilus during infection of the host. Understanding the assembly of ssRNA phages is essential for their use in biotechnology, such as RNA protection and delivery. Here, we present the complete gRNA model of the ssRNA phage Qβ, revealing that the 3′ untranslated region binds to the Mat and the 4127 nucleotides fold domain-by-domain, and is connected through long-range RNA–RNA interactions, such as kissing loops. Thirty-three operator-like RNA stem-loops are located and primarily interact with the asymmetric A/B CP-dimers, suggesting a pathway for the assembly of the virions. Additionally, we have discovered various forms of the virus-like particles (VLPs), including the canonical T = 3 icosahedral, larger T = 4 icosahedral, prolate, oblate forms, and a small prolate form elongated along the 3-fold axis. These particles are all produced during a normal infection, as well as when overexpressing the CPs. When overexpressing the shorter RNA fragments encoding only the CPs, we observed an increased percentage of the smaller VLPs, which may be sufficient to encapsidate a shorter RNA.more » « less