In the realm of neuroscience, mapping the three-dimensional (3D) neural circuitry and architecture of the brain is important for advancing our understanding of neural circuit organization and function. This study presents a novel pipeline that transforms mouse brain samples into detailed 3D brain models using a collaborative data analytics platform called “Texera.” The user-friendly Texera platform allows for effective interdisciplinary collaboration between team members in neuroscience, computer vision, and data processing. Our pipeline utilizes the tile images from a serial two-photon tomography/TissueCyte system, then stitches tile images into brain section images, and constructs 3D whole-brain image datasets. The resulting 3D data supports downstream analyses, including 3D whole-brain registration, atlas-based segmentation, cell counting, and high-resolution volumetric visualization. Using this platform, we implemented specialized optimization methods and obtained significant performance enhancement in workflow operations. We expect the neuroscience community can adopt our approach for large-scale image-based data processing and analysis.
more »
« less
Image Processing Pipeline for Fluoroelastomer Crystallite Detection in Atomic Force Microscopy Images
Phase transformations in materials systems can be tracked using atomic force microscopy (AFM), enabling the examination of surface properties and macroscale morphologies. In situ measurements investigating phase transformations generate large datasets of time-lapse image sequences. The interpretation of the resulting image sequences, guided by domain-knowledge, requires manual image processing using handcrafted masks. This approach is time-consuming and restricts the number of images that can be processed. In this study, we developed an automated image processing pipeline which integrates image detection and segmentation methods. We examine five time-series AFM videos of various fluoroelastomer phase transformations. The number of image sequences per video ranges from a hundred to a thousand image sequences. The resulting image processing pipeline aims to automatically classify and analyze images to enable batch processing. Using this pipeline, the growth of each individual fluoroelastomer crystallite can be tracked through time. We incorporated statistical analysis into the pipeline to investigate trends in phase transformations between different fluoroelastomer batches. Understanding these phase transformations is crucial, as it can provide valuable insights into manufacturing processes, improve product quality, and possibly lead to the development of more advanced fluoroelastomer formulations.
more »
« less
- Award ID(s):
- 2316628
- PAR ID:
- 10523544
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Integrating materials and manufacturing innovation
- ISSN:
- 2193-9772
- Subject(s) / Keyword(s):
- Keywords Phase transformations · Data augmentation · Object detection · Image segmentation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Image processing plays a vital role in artificial visual systems, which have diverse applications in areas such as biomedical imaging and machine vision. In particular, optical analog image processing is of great interest because of its parallel processing capability and low power consumption. Here, we present ultra-compact metasurfaces performing all-optical geometric image transformations, which are essential for image processing to correct image distortions, create special image effects, and morph one image into another. We show that our metasurfaces can realize binary image transformations by modifying the spatial relationship between pixels and converting binary images from Cartesian to log-polar coordinates with unparalleled advantages for scale- and rotation-invariant image preprocessing. Furthermore, we extend our approach to grayscale image transformations and convert an image with Gaussian intensity profile into another image with flat-top intensity profile. Our technique will potentially unlock new opportunities for various applications such as target tracking and laser manufacturing.more » « less
-
We investigated surface nanostructures on an antiferromagnet MnBi2Te4 using a novel imaging technique, direct (real)-space and real time coherent x-ray imaging (direct-CXI). This technique has provided new insights into antiferromagnetic textures, including the formation of anti-phase antiferromagnetic (AFM) domains and thermal dynamics of AFM domains and domain walls. While this method produces real-space images of AFM textures without requiring a complex imaging retrieval process, its underlying imaging mechanism has not been fully understood, limiting a deep understanding of AFM textures and the information they contain. By investigating the well-defined structural characteristics of the nanostructures fabricated on MnBi2Te4, we elucidate the imaging principle of this novel technique. We find that the observed images can be well explained by the Fresnel diffraction integral. Using a simple model from classical optics, our calculations successfully reproduce the experimentally observed images of the nanostructures. This demonstrates that direct-CXI not only provides straightforward real-space imaging but also contains phase information through its Fresnel diffraction integral.more » « less
-
null (Ed.)High-throughput phenotyping enables the efficient collection of plant trait data at scale. One example involves using imaging systems over key phases of a crop growing season. Although the resulting images provide rich data for statistical analyses of plant phenotypes, image processing for trait extraction is required as a prerequisite. Current methods for trait extraction are mainly based on supervised learning with human labeled data or semisupervised learning with a mixture of human labeled data and unsupervised data. Unfortunately, preparing a sufficiently large training data is both time and labor-intensive. We describe a self-supervised pipeline (KAT4IA) that uses K -means clustering on greenhouse images to construct training data for extracting and analyzing plant traits from an image-based field phenotyping system. The KAT4IA pipeline includes these main steps: self-supervised training set construction, plant segmentation from images of field-grown plants, automatic separation of target plants, calculation of plant traits, and functional curve fitting of the extracted traits. To deal with the challenge of separating target plants from noisy backgrounds in field images, we describe a novel approach using row-cuts and column-cuts on images segmented by transform domain neural network learning, which utilizes plant pixels identified from greenhouse images to train a segmentation model for field images. This approach is efficient and does not require human intervention. Our results show that KAT4IA is able to accurately extract plant pixels and estimate plant heights.more » « less
-
Atomic Force Microscopy (AFM) can create images of biomolecules under near-native conditions but suffers from limited lateral resolution due to the finite AFM tip size and recording frequency. The recently developed Localization Atomic Force Microscopy or LAFM (Heath et al., Nature 594, 385 (2021)) enhances lateral resolution by reconstructing peak positions in AFM image stacks, but it is less effective for flexible proteins with multiple conformations. Here we introduce an unsupervised deep learning algorithm that simultaneously registers and clusters images by protein conformation, thus making LAFM applicable to more flexible proteins. Using simulated AFM images from molecular dynamics simulations of the SecYEG translocon as a model membrane protein system, we demonstrate improved resolution for individual protein conformations. This work represents a step towards a more general LAFM algorithm that can handle biological macromolecules with multiple distinct conformational states such as SecYEG. Author summaryAtomic Force Microscopy (AFM) enables high-resolution imaging of biomolecules under near-native conditions but faces lateral resolution limits due to the finite AFM tip size and recording frequency. The recently developed Localization Atomic Force Microscopy (LAFM) method addresses this by reconstructing peak positions from AFM image stacks, achieving almost atomic resolution for rigid proteins like bacteriorhodopsin (Heath et al., Nature 594, 385 (2021)). However, flexible membrane proteins with dynamic conformations, such as the SecYEG translocon, which exhibits large and highly mobile cytoplasmic loops, lead to non-physical smearing in standard LAFM reconstructions. Here, we present a computational framework combining unsupervised deep clustering and LAFM to enhance the lateral resolution of AFM images of flexible membrane proteins. Our neural network algorithm (i) groups AFM images into conformationally homogeneous clusters and (ii) registers images within each cluster. Applying LAFM separately to these clusters minimizes smearing artifacts, yielding high-resolution reconstructions for distinct conformations. We validate this approach using synthetic AFM images generated from all-atom molecular dynamics simulations of SecYEG in a solvated POPE lipid bilayer. This advancement extends LAFM’s utility to encompass conformationally diverse membrane proteins.more » « less
An official website of the United States government

