A solvent-free post-treatment process known as vapor phase infiltration (VPI) is used to engineer the organic solvent reverse osmosis (OSRO) performance of polymer of intrinsic microporosity 1 (PIM-1) membranes via infiltration of trimethylaluminum (TMA) metal-organic vapor. The infiltration of inorganic aluminum constituents hybridizes the pure polymer PIM-1 into an organic-inorganic material (AlOxHy/PIM-1) with enhanced chemical stability. A homogenous distribution of inorganic loading in PIM-1 is achieved due to the reaction-limited infiltration mechanism, and the OSRO performance is enhanced as a result. OSRO separations of ethanol/isooctane mixtures using these membranes are shown to be capable of breaking the azeotropic composition with a separation factor for ethanol over isooctane greater than 5 and an ethanol permeance of 0.1 Lm–2h–1bar–1. Thus, these organic-inorganic hybrid membranes created via VPI show promise as an alternative method for separating azeotropic liquid mixtures.
more »
« less
Ultrasound-Mediated Nonequilibrium Separation of Ethanol-Water Solutions, Including Avoidance of the Azeotropic Bottleneck
Separation of liquid mixtures, frequently by distillation, is ubiquitous in the chemical and process industries (CPI). Distillation accounts for ~95% of the energy used in liquid separations, ~25–40% of overall energy used in CPI, and ~3% of global energy consumption.1-2 The low efficiency of distillation is largely due to two issues. First, there are large irreversible losses due to heat transfer.3 Second, a significant fraction of energy used in liquid separations is used to separate azeotropic mixtures in azeotrope-forming systems (e.g., ethanol/water). While a number of conventional distillation technologies4-5 (e.g., pressure-swing, extractive distillation, and azeotropic distillation6) and new separation approaches5 (e.g., dividing-wall columns, membranes, molecular sieves, and bio-absorbance) have been developed for azeotropic systems, these approaches largely rely on thermal separation via phase equilibrium or involve large capital and/or operational costs.
more »
« less
- Award ID(s):
- 2113915
- PAR ID:
- 10523604
- Editor(s):
- AIChE
- Publisher / Repository:
- 2018 AIChE Annual Meeting. AIChE
- Date Published:
- Format(s):
- Medium: X
- Location:
- 2018 AIChE Annual Meeting. AIChE, 2018
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One of the most efficient and promising separation alternatives to thermal methods such as distillation is the use of polymeric membranes that separate mixtures based on molecular size or chemical affinity. Self-assembled block copolymer membranes have gained considerable attention within the membrane field due to precise control over nanoscale structure, pore size, and chemical versatility. Despite the rapid progress and excitement, a significant hurdle in using block copolymer membranes for nanometer and sub-nanometer separations such as nanofiltration and reverse osmosis is the lower limit on domain size features. Strategies such as polymer post-functionalization, self-assembly of oligomers, liquid crystals, and random copolymers, or incorporation of artificial/natural channels within block copolymer materials are future directions with the potential to overcome current limitations with respect to separation size.more » « less
-
Separating azeotropic mixtures of hydrofluorocarbons (HFCs) for reuse and recycle is environmentally and economically imperative. While ionic liquid (IL)-enabled HFC separations show promise, Edisonian trial-and-error screening for the optimal IL entrainer is intractable and expensive. Here, we propose an open-source, equation-oriented modeling framework to rapidly translate HFC/IL solubility data into regressed thermodynamic models which can be used for process design under uncertainty and rapid IL screening. Moreover, we use data science and process systems engineering tools to contemplate which data are the most valuable for IL screening. We find that binary solubility data collected at multiple temperatures is adequate for separation process design, and newly available ternary solubility measurements should be reserved for validation. Additionally, we use uncertainty quantification analyses to show up to 10% experimental error is acceptable for IL screening decisions. Informed by these results, we recommend a multistep workflow for IL screening.more » « less
-
Yamashita, Y. ; Kano, M. (Ed.)To help slow climate change, international efforts have begun to mandate the phase-out of high global warming potential (GWP) hydrofluorocarbons (HFCs) throughout the next decade. Most HFC refrigerant mixtures form azeotropes, complicating separation into the individual HFC components for reuse and recycling. In this paper, we design and analyze ionic liquid (IL)-enabled extractive distillation processes for ternary HFC separations using AspenPlus. Specifically, we design processes to separate three commercially important HFC refrigerant mixtures (R-404A, R-407C, and R-410A) into high purity HFC streams. We find added value of the separation of R-410A of 0.58 $/kg with current market conditions, specifically laboratory-scale IL manufacturing costs (1000 $/kg of IL) and a low-price differential of 1.00 $/kg between raw materials and separated products. If the IL purchase cost decreases 90 % due to mass production, consistent with prior adoption of ILs for niche separations, the added value increases to 0.76 $/kg. Moreover, under proposed reductions in HFC manufacturing, the price of recovered products may dramatically increase in the future. For example, if the price of R-32 increases by 50 %, the added value would reach 3.08 $/kg. In summary, we find IL-based recycling of HFCs is economically viable based on simple technoeconomic analysis. Moreover, this paper reports capital and operation cost curves and a general analysis framework to analyze evolving market conditions.more » « less
-
Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.more » « less