skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developmental priorities shift with ontogeny during the early life stages of the American lobster Homarus americanus H. Milne Edwards, 1837 (Decapoda: Astacidea: Nephropidae)
Abstract The American lobster (Homarus americanusMilne Edwards, 1837) is an ecologically and economically valuable invertebrate in the Northwest Atlantic. Its geographic range is shifting northward due to ocean warming. While extensive research on the thermal tolerance of this species has been performed on adults and postlarvae, there have been few studies focused on its multiple early developmental stages. We applied transcriptomics to investigate transcriptional changes in laboratory-reared American lobster developmental stages I through V. Changes in gene expression were contextualized in the ontogenetic shifts in distribution that these different life history stages experience, with highly active stage IV exhibiting increased cellular metabolism and shell-building processes. We identified differential expression of transcripts related to thermal and UV stress in planktonic stages I-IV compared to benthic stage V, which suggests innate molecular defenses against these stressors. Together, these findings further our understanding of crustacean development in the context of climate change and can be used to inform population distribution modeling efforts. They also provide evidence for the need to investigate the potential trade-offs associated with responding to a changing environment on a stage-by-stage basis.  more » « less
Award ID(s):
1948146 1947639
PAR ID:
10523642
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Crustacean Biology
Volume:
44
Issue:
2
ISSN:
0278-0372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We build on previous research describing correlative links between changes in the abundance of the copepod Calanus finmarchicus, a foundational zooplankton species of the pelagic food web, and diminishing recruitment of young-of-year American lobster (Homarus americanus) to benthic nurseries in the Gulf of Maine. Using parallel 31-year time series of lobster larvae and zooplankton collected on the New Hampshire coast between 1988 and 2018, we investigated how changes in phenology of stage I larval lobster and their putative copepod prey, C. finmarchicus, affect their temporal overlap and potential to interact during the larval season. We found that over the time series both the lobster egg hatch and first appearance of larvae began earlier in the season, a trend significantly correlated with ocean warming. The last appearance of larvae in late summer has been delayed, however, thereby extending the larval season. Even with the longer larval lobster season, the C. finmarchicus season has increasingly been ending before the peak abundance of stage I lobster larvae. The net effect is a widening mismatch in phenology of the two species, an outcome consistent with the hypothesis that changes in abundance and phenology of C. finmarchicus have contributed to recent declines in lobster recruitment. 
    more » « less
  2. Abstract ELT-2 is the major transcription factor (TF) required for Caenorhabditis elegans intestinal development. ELT-2 expression initiates in embryos to promote development and then persists after hatching through the larval and adult stages. Though the sites of ELT-2 binding are characterized and the transcriptional changes that result from ELT-2 depletion are known, an intestine-specific transcriptome profile spanning developmental time has been missing. We generated this dataset by performing Fluorescence Activated Cell Sorting on intestine cells at distinct developmental stages. We analyzed this dataset in conjunction with previously conducted ELT-2 studies to evaluate the role of ELT-2 in directing the intestinal gene regulatory network through development. We found that only 33% of intestine-enriched genes in the embryo were direct targets of ELT-2 but that number increased to 75% by the L3 stage. This suggests additional TFs promote intestinal transcription especially in the embryo. Furthermore, only half of ELT-2's direct target genes were dependent on ELT-2 for their proper expression levels, and an equal proportion of those responded to elt-2 depletion with over-expression as with under-expression. That is, ELT-2 can either activate or repress direct target genes. Additionally, we observed that ELT-2 repressed its own promoter, implicating new models for its autoregulation. Together, our results illustrate that ELT-2 impacts roughly 20–50% of intestine-specific genes, that ELT-2 both positively and negatively controls its direct targets, and that the current model of the intestinal regulatory network is incomplete as the factors responsible for directing the expression of many intestinal genes remain unknown. 
    more » « less
  3. Tomlinson, Sean (Ed.)
    Abstract Physiological traits are often used for vulnerability assessments of organismal responses to climate change. Trait values can change dramatically over the life cycle of organisms but are typically assessed at a single developmental stage. Reconciling ontogenetic changes in physiological traits with vulnerability assessments often reveals early life-stage vulnerabilities. The degree to which ontogenetic changes in physiological traits are due to changes in body mass over development versus stage-specific responses determines the degree to which mass can be used as a proxy for vulnerability. Here, we use the painted lady butterfly, Vanessa cardui, to test ontogenetic changes in two physiological traits, the acute thermal sensitivity of routine metabolic rate (RMR Q10) and the critical thermal maximum (CTmax). RMR Q10 generally followed ontogenetic changes in body mass, with stages characterized by smaller body mass exhibiting lower acute thermal sensitivity. However, CTmax was largely decoupled from ontogenetic changes in body mass. In contrast with trends from other studies showing increasing vulnerability among progressively earlier developmental stages, our study revealed highly erratic patterns of vulnerability across ontogeny. Specifically, we found the lowest joint-trait vulnerability (both RMR Q10 and CTmax) in the earliest developmental stage we tested (3rd instar larvae), the highest vulnerabilities in the next two developmental stages (4th and 5th instar larvae), and reduced vulnerability into the pupal and adult stages. Our study supports growing evidence of mechanistic decoupling of physiology across developmental stages and suggests that body mass is not a universal proxy for all physiological trait indicators of climate vulnerability. 
    more » « less
  4. Abstract Understanding how changes in developmental gene expression alter morphogenesis is a fundamental problem in development and evolution. A promising approach to address this problem is to compare the developmental transcriptomes between related species. The echinoderm phylum consists of several model species that have significantly contributed to the understanding of gene regulation and evolution. Particularly, the regulatory networks of the sea star,Patiria miniata(P.miniata), have been extensively studied, however developmental transcriptomes for this species were lacking. Here we generated developmental transcriptomes ofP.miniataand compared these with those of two sea urchins species. We demonstrate that the conservation of gene expression depends on gene function, cell type and evolutionary distance. With increasing evolutionary distance the interspecies correlations in gene expression decreases. The reduction is more severe in the correlations between morphologically equivalent stages (diagonal elements) than in the correlation between morphologically distinct stages (off-diagonal elements). This could reflect a decrease in the morphological constraints compared to other constraints that shape gene expression at large evolutionary divergence. Within this trend, the interspecies correlations of developmental control genes maintain their diagonality at large evolutionary distance, and peak at the onset of gastrulation, supporting the hourglass model of phylotypic stage conservation. 
    more » « less
  5. The mitochondrial electron transport chain consists of the classical protein complexes (I–IV) that facilitate the flow of electrons and coupled oxidative phosphorylation to produce metabolic energy. The canonical route of electron transport may diverge by the presence of alternative components to the electron transport chain. The following study comprises the bioinformatic identification and functional characterization of a putative alternative oxidase in the smut fungus Sporisorium reilianum f. sp. zeae. This alternative respiratory component has been previously identified in other eukaryotes and is essential for alternative respiration as a response to environmental and chemical stressors, as well as for developmental transitionaoxs during the life cycle of an organism. A growth inhibition assay, using specific mitochondrial inhibitors, functionally confirmed the presence of an antimycin-resistant/salicylhydroxamic acid (SHAM)-sensitive alternative oxidase in the respirasome of S. reilianum. Gene disruption experiments revealed that this enzyme is involved in the pathogenic stage of the fungus, with its absence effectively reducing overall disease incidence in infected maize plants. Furthermore, gene expression analysis revealed that alternative oxidase plays a prominent role in the teliospore developmental stage, in agreement with favoring alternative respiration during quiescent stages of an organism’s life cycle. 
    more » « less