Abstract A central theme in the structural chemistry of intermetallic phases is that complex structures can be derived from variations on simpler ones. This is vividly demonstrated by the variety of structure types that can be connected to chemical pressure (CP)‐driven transformations of the simple CaCu5type. In this Article, we investigate an intriguing addition to this family: the EuMg5‐type intermetallics, as exemplified by YZn5. As expected from the large negative CPs around the cations in CaCu5‐type structures, YZn5exhibits tightened coordination environments around the cations. However, it also contains an unusually inhomogeneous atomic packing, particularly in channels running between the Y atoms alongc. Our structural reinvestigation of YZn5reveals a disordered occupation pattern of Zn atoms within these channels, consistent with the EuMg5+xtype, a disordered variant of the EuMg5type. DFT‐CP analysis indicates that the transition from the CaCu5type to the YZn5+xstructure indeed creates more compact Y environments, but strong tensions remain within the Zn sublattice. These include CP features on the channel walls that provide a mechanism for the communication of structural information between the channels and favorable cooperation in their occupation patterns. Based on these results, a structural model is proposed that explains an earlier observation of superstructure reflections in the diffraction patterns of ErZn5corresponding to a √3×√3×3 supercell.
more »
« less
As predicted and more: modulated channel occupation in YZn5+x
Like many complex intermetallic phases, the crystal structures of REZn5+xcompounds (RE = lanthanide or Group 3 element) based on the EuMg5type have gradually unfolded. The original reports described a complex hexagonal structure with an unusual combination of tetrahedrally close-packed regions and open spaces, as well as observations of superstructure reflections. More recently, we reinvestigated the structure of YZn5, reclassifying it as the EuMg5+x-type compound YZn5+x(x ≃ 0.2), in which disordered channels run alongcthrough the spaces formerly considered open. In addition, DFT-chemical pressure (DFT-CP) analysis of ordered models of YZn5+xhighlighted paths for communication between neighboring channels setting the stage for superstructure formation. Herein, the experimental elucidation of this effect is presented with the synthesis and structure determination of a modulated form of YZn5+x. By slow-cooling samples of YZn5+xfrom the annealing temperature, crystals were obtained that exhibit satellite reflections with the modulation wavevectorq= {1\over 3}a*+ {1\over 3}b*+ 0.3041c*. Structure solution and refinement using a (3+1)D model in superspace groupP31c({1\over 3}\,\!{1\over 3}σ3)00sreveals incommensurate order in the structure's channels. Here, two Zn sites associated with the channels are present, each with discontinuous atomic domains that are slanted in thex3x4plane. Their slanting corresponds to adjustments along thecaxis for the presence or absence of close neighbors along that axis, while the occupation patterns of neighboring channels are shifted by {1\over 3} of the modulation period. These features follow earlier predictions from CP analysis, highlighting how this approach can be used predictively in search of new phenomena.
more »
« less
- Award ID(s):
- 2127349
- PAR ID:
- 10523764
- Publisher / Repository:
- International Union for Crystallography; Wiley
- Date Published:
- Journal Name:
- Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials
- Volume:
- 79
- Issue:
- 4
- ISSN:
- 2052-5206
- Page Range / eLocation ID:
- 320 to 329
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The bonding in beryllocene, [BeCp2], took decades to establish, owing to its unexpected mixed hapticity structure (i.e., [Be(η5‐Cp)(η1‐Cp)]). Beryllium complexes containing the indenyl ligand, which is a close relative of the cyclopentadienyl anion, but which is also known to exhibit its own bonding peculiarities (e.g., facile η5⇄ η3shifts), have remained unknown. Standard metathetical approaches to their synthesis (e.g., with K[Ind′] + BeX2in an ether solvent) give rise to intractable oils from which nothing identifiable can be isolated. In contrast, mechanochemical preparation, involving the solvent‐free grinding of BeBr2and potassium indenides, leads to the production of discrete (indenyl)beryllium complexes, including [Be(C9H7)2] (1) and [Be{1,3‐(SiMe3)2C9H5}Br] (2). The former displays η5/η1‐coordinated ligands in the solid state, but DFT calculations indicate that an η5/η5‐conformation is less than 5 kcal mol−1higher in energy.more » « less
-
Abstract Exploration of the reduction chemistry of the 2,2’‐bipyridine (bipy) lanthanide metallocene complexes Cp*2LnCl(bipy) and Cp*2Ln(bipy) (Cp* = C5Me5) resulted in the isolation of a series of complexes with unusual composition and structure including complexes with a single Cp* ligand, multiple azide ligands, and bipy ligands with close parallel orientations. These results not only reveal new structural types, but they also show the diverse chemistry displayed by this redox‐active platform. Treatment of Cp*2NdCl(bipy) with excess KC8resulted in the formation of the mono‐Cp* Nd(III) complex, [K(crypt)]2[Cp*Nd(bipy)2],1, as well as [K(crypt)][Cp*2NdCl2],2, and the previously reported [K(crypt)][Cp*2Nd(bipy)]. A mono‐Cp* Lu(III) complex, Cp*Lu(bipy)2,3, was also found in an attempt to make Cp*2Lu(bipy) from LuCl3, 2 equiv. of KCp*, bipy, and K/KI. Surprisingly, the (bipy)1−ligands in neighboring molecules in the structure of3are oriented in a parallel fashion with intermolecular C⋅⋅⋅C distances of 3.289(4) Å, which are shorter than the sum of van der Waals radii of two carbon atoms, 3.4 Å. Another product with one Cp* ligand per lanthanide was isolated from the reaction of [K(crypt)][Cp*2Eu(bipy)] with azobenzene, which afforded the dimeric Eu(II) complex, [K(crypt)]2[Cp*Eu(THF)(PhNNPh)]2,4. Attempts to make4from the reaction between Cp*2Eu(THF)2and a reduced azobenzene anion generated instead the mixed‐valent Eu(III)/Eu(II) complex, [K(crypt)][Cp*Eu(THF)(PhNNPh)]2,5, which allows direct comparison with the bimetallic Eu(II) complex4. Mono‐Cp* complexes of Yb(III) are obtained from reactions of the Yb(II) complex, [K(crypt)][Cp*2Yb(bipy)], with trimethylsilylazide, which afforded the tetra‐azido [K(crypt)]2[Cp*Yb(N3)4],6, or the di‐azido complex [K(crypt)]2[Cp*Yb(N3)2(bipy)],7 a, depending on the reaction stoichiometry. A mono‐Cp* Yb(III) complex is also isolated from reaction of [K(crypt)][Cp*2Yb(bipy)] with elemental sulfur which forms the mixed polysulfido Yb(III) complex [K(crypt)]2[Cp*Yb(S4)(S5)],8 a. In contrast to these reactions that form mono‐Cp* products, reduction of Cp*2Yb(bipy) with 1 equiv. of KC8in the presence of 18‐crown‐6 resulted in the complete loss of Cp* ligands and the formation of [K(18‐c‐6)(THF)][Yb(bipy)4],9. The (bipy)1−ligands of9are arranged in a parallel orientation, as observed in the structure of3, except in this case this interaction is intramolecular and involves pairs of ligands bound to the same Yb atom. Attempts to reduce further the Sm(II) (bipy)1−complex, Cp*2Sm(bipy) with 2 equiv. of KC8in the presence of excess 18‐crown‐6 led to the isolation of a Sm(III) salt of (bipy)2−with an inverse sandwich Cp* counter‐cation and a co‐crystallized K(18‐c‐6)Cp* unit, [K2(18‐c‐6)2Cp*]2[Cp*2Sm(bipy)]2 ⋅ [K(18‐c‐6)Cp*],10.more » « less
-
Abstract Polarimetric infrared (IR) detection bolsters IR thermography by leveraging the polarization of light. Optical anisotropy, i.e., birefringence and dichroism, can be leveraged to achieve polarimetric detection. Recently, giant optical anisotropy is discovered in quasi‐1D narrow‐bandgap hexagonal perovskite sulfides, A1+xTiS3, specifically BaTiS3and Sr9/8TiS3. In these materials, the critical role of atomic‐scale structure modulations in the unconventional electrical, optical, and thermal properties raises the broader question of the nature of other materials that belong to this family. To address this issue, for the first time, high‐quality single crystals of a largely unexplored member of the A1+xTiX3(X = S, Se) family, BaTiSe3are synthesized. Single‐crystal X‐ray diffraction determined the room‐temperature structure with theP31cspace group, which is a superstructure of the earlier reportedP63/mmcstructure. The crystal structure of BaTiSe3features antiparallelc‐axis displacements similar to but of lower symmetry than BaTiS3, verified by the polarization dependent Raman spectroscopy. Fourier transform infrared (FTIR) spectroscopy is used to characterize the optical anisotropy of BaTiSe3, whose refractive index along the ordinary (E⊥c) and extraordinary (E‖c) optical axes is quantitatively determined by combining ellipsometry studies with FTIR. With a giant birefringence Δn∼ 0.9, BaTiSe3emerges as a new candidate for miniaturized birefringent optics for mid‐wave infrared to long‐wave infrared imaging.more » « less
-
Abstract Al(OC(CF3)3)(PhF) reacts with silanols present on partially dehydroxylated silica to form well‐defined ≡SiOAl(OC(CF3)3)2(O(Si≡)2) (1).27Al NMR and DFT calculations with a small cluster model to approximate the silica surface show that the aluminum in1adopts a distorted trigonal bipyramidal coordination geometry by coordinating to a nearby siloxane bridge and a fluorine from the alkoxide. Fluoride ion affinity (FIA) calculations follow experimental trends and show that1is a stronger Lewis acid than B(C6F5)3and Al(OC(CF3)3)(PhF) but is weaker than Al(OC(CF3)3) andiPr3Si+. Cp2Zr(CH3)2reacts with1to form [Cp2ZrCH3][≡SiOAl(OC(CF3)3)2(CH3)] (3) by methide abstraction. This reactivity pattern is similar to reactions of organometallics with the proposed strong Lewis acid sites present on Al2O3.more » « less
An official website of the United States government

