skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examining the Oxidation States of Metals in Aerosols Emitted by Electronic Cigarettes
Electronic cigarettes (ECs) emit many toxic substances, including metals, that can pose a threat to users and the environment. The toxicity of the emitted metals depends on their oxidation states. Hence, this study examines the oxidation states of metals observed in EC aerosols. X-ray photoelectron spectroscopy analysis of the filters that collected EC aerosols identified the oxidation states of five primary metals (based on surface sample analysis), including chromium(III) (close to 100%) under low power setting while a noticeable amount of chromium(VI) (15%) at higher power settings of the EC, and copper(II) (100%), zinc(II) (100%), nickel(II) (100%), lead(II) (65%), and lead(IV) (35%) regardless of power settings. This observation indicates that the increased temperature due to higher power settings could alter the oxidation states of certain metals. We noted that many metals were in their lesser toxic states; however, inhaling these metals may still pose health risks.  more » « less
Award ID(s):
2324142
PAR ID:
10523770
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Chemical Research in Toxicology
Edition / Version:
1
Volume:
37
Issue:
7
ISSN:
0893-228X
Page Range / eLocation ID:
1113 to 1120
Subject(s) / Keyword(s):
electronic cigarettes metal oxidation state toxicity
Format(s):
Medium: X Other: pdf;
Sponsoring Org:
National Science Foundation
More Like this
  1. This study employed high-time-resolution systems to examine the transient properties of aerosols and gases emitted from electronic cigarette (EC) puffs. Using a fast aerosol sizer, we measured particle size distributions (PSDs) across various EC brands (JUUL, VUSE, VOOPOO), revealing sizes ranging from 5 to 1000 nm at concentrations of 107 to 1010 cm–3. Most aerosols were found to be in the ultrafine range (below 100 nm), with JUUL-, VUSE-, and VOOPOO-producing aerosols with geometric mean sizes of 19.9, 47.3, and 29.4 nm, respectively. Applying the International Commission on Radiological Protection (ICRP) deposition model and assuming no further evolution of aerosols in the respiratory system, we estimated particle deposition in different respiratory regions: 45–60% in the alveolar region, 10–25% in the tracheobronchial region, and 20–35% in the extrathoracic region. The highest single-puff deposition was observed with the VOOPOO device at 60 W, depositing 180.1 ± 7.6 μg in the alveolar region. The gas emissions (CO2, NOx, CO, and total hydrocarbons) were measured at different power settings of the VOOPOO EC. Single-puff NOx and CO levels exceeded the permissible exposure limits of the Occupational Safety and Health Administration, indicating potential acute exposure risks. Higher power settings were correlated with increased gas mixing ratios, suggesting more e-liquid vaporization and possible chemical transformations at higher temperatures. These findings demonstrated significant health risks associated with ultrafine particles from high-power ECs and emphasize the need for advanced measurements to accurately assess their physicochemical properties and potential health implications. 
    more » « less
  2. The usage of electronic cigarettes (ECs) has surged since their invention two decades ago. However, to date, the health effects of EC aerosol exposure are still not well understood because of insufficient data on the chemical composition of EC aerosols and the corresponding evidence of health risks upon exposure. Herein, we quantified the metals in primary and secondhand aerosols generated by three brands of ECs. By combining aerosol filter sampling and inductively coupled plasma mass spectrometry (ICP-MS), we assessed the mass of metals as a function of EC flavoring, nicotine concentration, device power, puff duration, and aging of the devices. The masses of Cr, Cu, Mn, Ni, Cu, and Zn were consistently high across all brands in the primary and secondhand aerosols, some of which were above the regulated maximum daily intake amount, especially for Cr and Ni with mass (nanograms per 10 puffs) emitted at 117 ± 54 and 50 ± 24 (JUUL), 125 ± 77 and 219 ± 203 (VOOPOO), and 33 ± 10 and 27 ± 2 (Vapor4Life). Our analysis indicates that the metals are predominantly released from the EC liquid, potentially through mechanisms such as bubble bursting or the vaporization of metal–organic compounds. High metal contents were also observed in simulated secondhand aerosols, generally 80–90% of those in primary aerosols. Our findings provide a more detailed understanding of the metal emission characteristics of EC for assessing its health effects and policymaking. 
    more » « less
  3. Abstract Roadsides are targeted for restoration of pollinator‐friendly plants. Yet, roads are sources of macronutrient, micronutrient and heavy metal pollution that may contaminate roadside plants. Adjacent landscape features such as railroads and agriculture provide additional macronutrient and heavy metal pollution that may exacerbate traffic effects. However, we lack perspective on how roads combine with rural landscape features to influence nutrition of roadside plants, which could have implications for pollinator health.We surveyed roadsides across Minnesota, USA and measured foliar levels of dietary macronutrients (nitrogen, phosphorous and potassium), a micronutrient (sodium) and metals (iron, zinc, copper, chromium, nickel, lead, aluminium and cadmium) in six abundant roadside forb species used by insect pollinators:Asclepias syriaca,Dalea purpurea,Monarda fistulosa,Ratibida pinnata,Solidagospp. andTrifolium pratense. We aimed to determine (1) how road variables (traffic volume and distance from road) combine with adjacent land use (railroad and agriculture) to influence element content of roadside forbs and (2) whether some forb species show consistent differences in their accumulation of potentially toxic heavy metals, which could inform selection of species to plant along roadsides.We found that foliar concentrations of nine elements increased with greater traffic volume (nitrogen, phosphorous, iron, zinc, copper, chromium, nickel, lead and aluminium), and concentrations of six elements declined with distance from the road (nitrogen, phosphorous, potassium, iron, zinc and copper). Leaves collected adjacent to railroad had less phosphorous, potassium, iron, nickel and aluminium than leaves collected from sites not adjacent to railroad. Additionally, leaves collected from sites adjacent to agriculture had lower copper levels than leaves from sites without adjacent agriculture. We found no evidence that particular ford species along roadsides consistently rank higher than other species in their accumulation of heavy metals.Our results show that traffic alters more elements in roadside plants than does adjacent landscape context, alleviating concerns that landscape features exacerbate pollutant levels in roadside pollinator habitat. However, nutrient contamination of most roadside plants is unlikely to reach toxic levels for insect pollinators. This work is consistent with the positive conservation potential of low to moderate traffic roadsides for pollinators. 
    more » « less
  4. The lower 12·875 km of the Passaic River is heavily contaminated due to industrial activities – specifically heavy metal extraction from chromium-ore-processing plants and production of pesticides and herbicides. Conventional methods for remediating contaminated sediments have limited application due to the tidal action and urban area of the contaminated section of the Passaic River. Hence, this study proposes an in situ technology using ultrasound and ozone nanobubbles to remediate the sediments. Ultrasound is capable of desorbing heavy metals from soil, and ozone can oxidise the released heavy metals to a form that is mobile for ease of extraction. Nanobubbles are used as an effective ozone delivery method for the oxidation of heavy metals. Bench-scale tests were performed to evaluate the feasibility of the proposed technology. Ozone nanobubbles increased the solubility of ozone in water and reduced wastage. Also, due to the high ozone concentrations in water, chromium oxidation increased. A synthetic soil with a grain size distribution similar to that of actual river sediments was artificially contaminated with chromium and used in this research. Test results showed a 97·54% chromium removal efficiency, suggesting the feasibility of the proposed technology for pilot-scale studies. 
    more » « less
  5. Hurricanes can introduce metals into coastal systems. Unfortunately, metal concentrations are unknown in many hurricane prone locations. Here we measured vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, molybdenum, cadmium, antimony, barium, lead, and uranium in surface water, sediments, and seagrass (Thalassia testudinum) collected in seagrass beds and marinas around The Abacos, The Bahamas in November 2019, May 2020, and June and December 2021 to establish a post-Hurricane Dorian baseline, assess changes post-storm, and understand bioconcentration in seagrass. Metal concentrations were higher in marinas and several increased over time. Also, metal profiles in sediments became more similar over time. Together, these suggest that metals were impacted by Hurricane Dorian and are either returning to pre-storm conditions or increasing due to recovery-related activities. Thalassia testudinum uptakes most metals more readily from surface water than sediments. Therefore, seagrasses may phytoremediate metals, but also transfer metals to higher trophic levels. 
    more » « less