skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrotectonics of Grand Canyon Groundwater
The Grand Canyon provides a deeply dissected view of the aquifers of the Colorado Plateau and its public and tribal lands. Stacked sandstone and karst aquifers are vertically connected by a network of faults and breccia pipes creating a complex groundwater network. Hydrochemical variations define structurally controlled groundwater sub-basins, each with main discharging springs. North Rim (N-Rim), South Rim (S-Rim), and far-west springs have different stable isotope fingerprints, reflecting different mean recharge elevations. Variation within each region reflects proportions of fast/slow aquifer pathways. Often considered perched, the upper Coconino (C) aquifer has a similar compositional range as the regional Redwall-Muav (R-M) karst aquifer, indicating connectivity. Natural and anthropogenic tracers show that recharge can travel 2 km vertically and tens of kilometers laterally in days to months via fracture conduits to mix with older karst baseflow. Six decades of piping N-Rim water to S-Rim Village and infiltration of effluent along the Bright Angel fault have sustained S-Rim groundwaters and likely induced S-Rim microseismicity. Sustainable groundwater management and uranium mining threats require better monitoring and application of hydrotectonic concepts. ▪ Hydrotectonic concepts include distinct structural sub-basins, fault fast conduits, confined aquifers, karst aquifers, upwelling geothermal fluids, and induced seismicity. ▪ N-Rim, S-Rim, and far-west springs have different stable isotope fingerprints reflecting different mean recharge elevations and residence times. ▪ The upper C and lower R-M aquifers have overlapping stable isotope fingerprints in a given region, indicating vertical connectively between aquifers. ▪ S-Rim springs and groundwater wells are being sustained by ∼60 years of piping of N-Rim water to S-Rim, also inducing seismicity. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.  more » « less
Award ID(s):
1955078 0538304 1914490
PAR ID:
10523932
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Annual Reviews of Earth & Planetary Science
Date Published:
Journal Name:
Annual Review of Earth and Planetary Sciences
Volume:
52
Issue:
1
ISSN:
0084-6597
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The increased environmental abundance of anthropogenic reactive nitrogen species (Nr = ammonium [NH4+], nitrite [NO2−] and nitrate [NO3−]) may increase atmospheric nitrous oxide (N2O) concentrations, and thus global warming and stratospheric ozone depletion. Nitrogen cycling and N2O production, reduction, and emissions could be amplified in carbonate karst aquifers because of their extensive global range, susceptibility to nitrogen contamination, and groundwater-surface water mixing that varies redox conditions of the aquifer. The magnitude of N2O cycling in karst aquifers is poorly known, however, and thus we sampled thirteen springs discharging from the karstic Upper Floridan Aquifer (UFA) to evaluate N2O cycling. The springs can be separated into three groups based on variations in subsurface residence times, differences in surface–groundwater interactions, and variable dissolved organic carbon (DOC) and dissolved oxygen (DO) concentrations. These springs are oxic to sub-oxic and have NO3− concentrations that range from < 0.1 to 4.2 mg N-NO3−/L and DOC concentrations that range from < 0.1 to 50 mg C/L. Maximum spring water N2O concentrations are 3.85 μg N-N2O/L or ~ 12 times greater than water equilibrated with atmospheric N2O. The highest N2O concentrations correspond with the lowest NO3− concentrations. Where recharge water has residence times of a few days, partial denitrification to N2O occurs, while complete denitrification to N2 is more prominent in springs with longer subsurface residence times. Springs with short residence times have groundwater emission factors greater than the global average of 0.0060, reflecting N2O production, whereas springs with residence times of months to years have groundwater emission factors less than the global average. These findings imply that N2O cycling in karst aquifers depends on DOC and DO concentrations in recharged surface water and subsequent time available for N processing in the subsurface. 
    more » « less
  2. null (Ed.)
    The increased environmental abundance of anthropogenic reactive nitrogen species (Nr = ammonium [NH4+], nitrite [NO2􀀀 ] and nitrate [NO3􀀀 ]) may increase atmospheric nitrous oxide (N2O) concentrations, and thus global warming and stratospheric ozone depletion. Nitrogen cycling and N2O production, reduction, and emissions could be amplified in carbonate karst aquifers because of their extensive global range, susceptibility to nitrogen contamination, and groundwater-surface water mixing that varies redox conditions of the aquifer. The magnitude of N2O cycling in karst aquifers is poorly known, however, and thus we sampled thirteen springs discharging from the karstic Upper Floridan Aquifer (UFA) to evaluate N2O cycling. The springs can be separated into three groups based on variations in subsurface residence times, differences in surface–groundwater interactions, and variable dissolved organic carbon (DOC) and dissolved oxygen (DO) concentrations. These springs are oxic to sub-oxic and have NO3􀀀 concentrations that range from < 0.1 to 4.2 mg N-NO3􀀀 /L and DOC concentrations that range from < 0.1 to 50 mg C/L. Maximum spring water N2O concentrations are 3.85 μg N-N2O/L or ~ 12 times greater than water equilibrated with atmospheric N2O. The highest N2O concentrations correspond with the lowest NO3􀀀 concentrations. Where recharge water has residence times of a few days, partial denitrification to N2O occurs, while complete denitrification to N2 is more prominent in springs with longer subsurface residence times. Springs with short residence times have groundwater emission factors greater than the global average of 0.0060, reflecting N2O production, whereas springs with residence times of months to years have groundwater emission factors less than the global average. These findings imply that N2O cycling in karst aquifers depends on DOC and DO concentrations in recharged surface water and subsequent time available for N processing in the subsurface. 
    more » « less
  3. ABSTRACT Analysis of PRISM and SNOTEL station data paired with USGS streamflow gage data in the western United States shows that, in snow‐dominated mountainous watersheds, streamflow regimes differ between watersheds with karst geology and their non‐karst neighbours. These carbonate aquifers exhibit a spectrum of flow paths encompassing karst conduits, including large fractures or voids that transmit water readily to springs and other surface waters, and matrix flow paths through soils, highly fractured bedrock, or porous media bedrock grains. A well‐connected karst aquifer will discharge a large portion of its accumulated precipitation to surface water via springs and other groundwater flow paths on an annual scale, exhibiting a lagged response to precipitation presenting as a “memory effect” in hydrograph time series. These patterns were observed in the hydrologic records of gaged watersheds with exposed or near‐surface carbonate layers accounting for > 30% of their drainage area. In western snow‐dominated watersheds, where paired streamflow and SNOTEL data are available, analysis of the precipitation and flow time series shows low‐flow volume is strongly related to karst aquifer conditions and winter precipitation when compared to low‐flow volumes present in non‐karst watersheds, which have a complex relationship to multiple driving metrics. Analysis of normalised streamflow and cumulative precipitation in karst watersheds show that low‐flow conditions are highly dependent on the preceding winter precipitation and streamflow in both wet and dry periods. In non‐karst watersheds, increased precipitation primarily impacts high‐flow, spring runoff volumes with no clear relationship to low‐flow periods. When comparing cumulative streamflow and precipitation volumes within each water year and over longer timescales, karst watersheds show the potential filling and draining of large amounts of karst storage, whereas non‐karst watersheds demonstrate a more stable storage regime. Communities in many western US watersheds are dependent on snow‐dominated karst watersheds for their water supply. This analysis, using widely available hydrologic data, can provide insight into the recharge and storage processes within these watersheds, improve our ability to assess current flow regimes, anticipate the impacts of climate change on water availability, and help manage water supplies. 
    more » « less
  4. Abstract Oxygen and hydrogen isotopes were used in this study to detect a hydraulic connection between a sinkhole lake and a karst spring. In karst areas, surface water that flows to a lake can drain through sinkholes in the lakebed to the underlying aquifer, and then flows in karst conduits and through aquifer matrix. At the study site located in northwest Florida, USA, Lake Miccosukee immediately drains into two sinkholes. Results from a dye tracing experiment indicate that lake water discharges at Natural Bridge Spring, a first‐magnitude spring 32 km downgradient from the lake. By collecting weekly water samples from the lake, the spring, and a groundwater well 10 m away from the lake during the dry period between October 2019 and January 2020, it was found that, when rainfall effects on isotopic signature in spring water are removed, increased isotope ratios of spring water can be explained by mixing of heavy‐isotope‐enriched lake water into groundwater, indicating hydraulic connection between the lake and the spring. Such a detection of hydraulic connection at the scale of tens of kilometers and for a first‐magnitude spring has not been previously reported in the literature. Based on the isotope ratio data, it was estimated that, during the study period, about 8.5% the spring discharge was the lake water that drained into the lake sinkholes. 
    more » « less
  5. Abstract Mountain System Recharge processes are significant natural recharge pathways in many arid and semi‐arid mountainous regions. However, Mountain System Recharge processes are often poorly understood and characterized in hydrologic models. Mountains are the primary water supply source to valley aquifers via lateral groundwater flow from the mountain block (Mountain Block Recharge) and focused recharge from mountain streams contributing to focused Mountain Front Recharge at the piedmont zone. Here, we present a multi‐tool isogeochemical approach to characterize mountain flow paths and Mountain System Recharge in the northern Tulare Basin, California. We used groundwater chemistry data to delineate hydrochemical facies and explain the chemical evolution of groundwater from the Sierra Nevada to the Central Valley aquifer. Stable isotopes and radiogenic groundwater tracers validated Mountain System Recharge processes by differentiating focused from diffuse recharge, and estimating apparent groundwater age, respectively. Novel application of End‐Member Mixing Analysis using conservative chemical components revealed three Mountain System Recharge end‐members: (a) evaporated Ca‐HCO3water type associated with focused Mountain Front Recharge, (b) non‐evaporated Ca‐HCO3and Na‐HCO3water types with short residence times associated with shallow Mountain Block Recharge, and (c) Na‐HCO3groundwater type with long residence time associated with deep Mountain Block Recharge. We quantified the contribution of each Mountain System Recharge process to the valley aquifer by calculating mixing ratios. Our results show that deep Mountain Block Recharge is a significant recharge component, representing 31%–53% of the valley groundwater. Greater hydraulic connectivity between the Sierra Nevada and Central Valley has significant implications for parameterizing groundwater flow models. Our framework is useful for understanding Mountain System Recharge processes in other snow‐dominated mountain watersheds. 
    more » « less