Abstract Understanding SARS-CoV-2 transmission within and among communities is critical for tailoring public health policies to local context. However, analysis of community transmission is challenging due to a lack of high-resolution surveillance and testing data. Here, using contact tracing records for 644,029 cases and their contacts in New York City during the second pandemic wave, we provide a detailed characterization of the operational performance of contact tracing and reconstruct exposure and transmission networks at individual and ZIP code scales. We find considerable heterogeneity in reported close contacts and secondary infections and evidence of extensive transmission across ZIP code areas. Our analysis reveals the spatial pattern of SARS-CoV-2 spread and communities that are tightly interconnected by exposure and transmission. We find that locations with higher vaccination coverage and lower numbers of visitors to points-of-interest had reduced within- and cross-ZIP code transmission events, highlighting potential measures for curtailing SARS-CoV-2 spread in urban settings. 
                        more » 
                        « less   
                    
                            
                            Community transmission of SARS-CoV-2 during the Delta wave in New York City
                        
                    
    
            Background Understanding community transmission of SARS-CoV-2 variants of concern (VOCs) is critical for disease control in the post pandemic era. The Delta variant (B.1.617.2) emerged in late 2020 and became the dominant VOC globally in the summer of 2021. While the epidemiological features of the Delta variant have been extensively studied, how those characteristics shaped community transmission in urban settings remains poorly understood. Methods Using high-resolution contact tracing data and testing records, we analyze the transmission of SARS-CoV-2 during the Delta wave within New York City (NYC) from May 2021 to October 2021. We reconstruct transmission networks at the individual level and across 177 ZIP code areas, examine network structure and spatial spread patterns, and use statistical analysis to estimate the effects of factors associated with COVID-19 spread. Results We find considerable individual variations in reported contacts and secondary infections, consistent with the pre-Delta period. Compared with earlier waves, Delta-period has more frequent long-range transmission events across ZIP codes. Using socioeconomic, mobility and COVID-19 surveillance data at the ZIP code level, we find that a larger number of cumulative cases in a ZIP code area is associated with reduced within- and cross-ZIP code transmission and the number of visitors to each ZIP code is positively associated with the number of non-household infections identified through contact tracing and testing. Conclusions The Delta variant produced greater long-range spatial transmission across NYC ZIP code areas, likely caused by its increased transmissibility and elevated human mobility during the study period. Our findings highlight the potential role of population immunity in reducing transmission of VOCs. Quantifying variability of immunity is critical for identifying subpopulations susceptible to future VOCs. In addition, non-pharmaceutical interventions limiting human mobility likely reduced SARS-CoV-2 spread over successive pandemic waves and should be encouraged for reducing transmission of future VOCs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2229605
- PAR ID:
- 10523947
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- BMC Infectious Diseases
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 1471-2334
- Page Range / eLocation ID:
- 753
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant has caused a dramatic resurgence in infections in the United Sates, raising questions regarding potential transmissibility among vaccinated individuals. MethodsBetween October 2020 and July 2021, we sequenced 4439 SARS-CoV-2 full genomes, 23% of all known infections in Alachua County, Florida, including 109 vaccine breakthrough cases. Univariate and multivariate regression analyses were conducted to evaluate associations between viral RNA burden and patient characteristics. Contact tracing and phylogenetic analysis were used to investigate direct transmissions involving vaccinated individuals. ResultsThe majority of breakthrough sequences with lineage assignment were classified as Delta variants (74.6%) and occurred, on average, about 3 months (104 ± 57.5 days) after full vaccination, at the same time (June-July 2021) of Delta variant exponential spread within the county. Six Delta variant transmission pairs between fully vaccinated individuals were identified through contact tracing, 3 of which were confirmed by phylogenetic analysis. Delta breakthroughs exhibited broad viral RNA copy number values during acute infection (interquartile range, 1.2-8.64 Log copies/mL), on average 38% lower than matched unvaccinated patients (3.29-10.81 Log copies/mL, P < .00001). Nevertheless, 49% to 50% of all breakthroughs, and 56% to 60% of Delta-infected breakthroughs exhibited viral RNA levels above the transmissibility threshold (4 Log copies/mL) irrespective of time after vaccination. ConclusionsDelta infection transmissibility and general viral RNA quantification patterns in vaccinated individuals suggest limited levels of sterilizing immunity that need to be considered by public health policies. In particular, ongoing evaluation of vaccine boosters should specifically address whether extra vaccine doses curb breakthrough contribution to epidemic spread.more » « less
- 
            Funk, Sebastian (Ed.)Simultaneously controlling COVID-19 epidemics and limiting economic and societal impacts presents a difficult challenge, especially with limited public health budgets. Testing, contact tracing, and isolating/quarantining is a key strategy that has been used to reduce transmission of SARS-CoV-2, the virus that causes COVID-19 and other pathogens. However, manual contact tracing is a time-consuming process and as case numbers increase a smaller fraction of cases’ contacts can be traced, leading to additional virus spread. Delays between symptom onset and being tested (and receiving results), and a low fraction of symptomatic cases being tested and traced can also reduce the impact of contact tracing on transmission. We examined the relationship between increasing cases and delays and the pathogen reproductive number R t , and the implications for infection dynamics using deterministic and stochastic compartmental models of SARS-CoV-2. We found that R t increased sigmoidally with the number of cases due to decreasing contact tracing efficacy. This relationship results in accelerating epidemics because R t initially increases, rather than declines, as infections increase. Shifting contact tracers from locations with high and low case burdens relative to capacity to locations with intermediate case burdens maximizes their impact in reducing R t (but minimizing total infections may be more complicated). Contact tracing efficacy decreased sharply with increasing delays between symptom onset and tracing and with lower fraction of symptomatic infections being tested. Finally, testing and tracing reductions in R t can sometimes greatly delay epidemics due to the highly heterogeneous transmission dynamics of SARS-CoV-2. These results demonstrate the importance of having an expandable or mobile team of contact tracers that can be used to control surges in cases. They also highlight the synergistic value of high capacity, easy access testing and rapid turn-around of testing results, and outreach efforts to encourage symptomatic cases to be tested immediately after symptom onset.more » « less
- 
            Estimating the differences in the incubation-period, serial-interval, and generation-interval distributions of SARS-CoV-2 variants is critical to understanding their transmission. However, the impact of epidemic dynamics is often neglected in estimating the timing of infection—for example, when an epidemic is growing exponentially, a cohort of infected individuals who developed symptoms at the same time are more likely to have been infected recently. Here, we reanalyze incubation-period and serial-interval data describing transmissions of the Delta and Omicron variants from the Netherlands at the end of December 2021. Previous analysis of the same dataset reported shorter mean observed incubation period (3.2 d vs. 4.4 d) and serial interval (3.5 d vs. 4.1 d) for the Omicron variant, but the number of infections caused by the Delta variant decreased during this period as the number of Omicron infections increased. When we account for growth-rate differences of two variants during the study period, we estimate similar mean incubation periods (3.8 to 4.5 d) for both variants but a shorter mean generation interval for the Omicron variant (3.0 d; 95% CI: 2.7 to 3.2 d) than for the Delta variant (3.8 d; 95% CI: 3.7 to 4.0 d). The differences in estimated generation intervals may be driven by the “network effect”—higher effective transmissibility of the Omicron variant can cause faster susceptible depletion among contact networks, which in turn prevents late transmission (therefore shortening realized generation intervals). Using up-to-date generation-interval distributions is critical to accurately estimating the reproduction advantage of the Omicron variant.more » « less
- 
            Importance Contact tracing is the process of identifying people who have recently been in contact with someone diagnosed with an infectious disease. During an outbreak, data collected from contact tracing can inform interventions to reduce the spread of infectious diseases. Understanding factors associated with completion rates of contact tracing surveys can help design improved interview protocols for ongoing and future programs. Objective To identify factors associated with completion rates of COVID-19 contact tracing surveys in New York City (NYC) and evaluate the utility of a predictive model to improve completion rates, we analyze laboratory-confirmed and probable COVID-19 cases and their self-reported contacts in NYC from October 1st 2020 to May 10th 2021. Methods We analyzed 742,807 case investigation calls made during the study period. Using a log-binomial regression model, we examined the impact of age, time of day of phone call, and zip code-level demographic and socioeconomic factors on interview completion rates. We further developed a random forest model to predict the best phone call time and performed a counterfactual analysis to evaluate the change of completion rates if the predicative model were used. Results The percentage of contact tracing surveys that were completed was 79.4%, with substantial variations across ZIP code areas. Using a log-binomial regression model, we found that the age of index case (an individual who has tested positive through PCR or antigen testing and is thus subjected to a case investigation) had a significant effect on the completion of case investigation – compared with young adults (the reference group,24 years old < age < = 65 years old), the completion rate for seniors (age > 65 years old) were lower by 12.1% (95%CI: 11.1% – 13.3%), and the completion rate for youth group (age < = 24 years old) were lower by 1.6% (95%CI: 0.6% –2.6%). In addition, phone calls made from 6 to 9 pm had a 4.1% (95% CI: 1.8% – 6.3%) higher completion rate compared with the reference group of phone calls attempted from 12 and 3 pm. We further used a random forest algorithm to assess its potential utility for selecting the time of day of phone call. In counterfactual simulations, the overall completion rate in NYC was marginally improved by 1.2%; however, certain ZIP code areas had improvements up to 7.8%. Conclusion These findings suggest that age and time of day of phone call were associated with completion rates of case investigations. It is possible to develop predictive models to estimate better phone call time for improving completion rates in certain communities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    