skip to main content


This content will become publicly available on July 1, 2025

Title: Distinguishing Elements at the Sub‐Nanometer Scale on the Surface of a High Entropy Alloy
Abstract

Materials in crystalline form possess translational symmetry (TS) when the unit cell is repeated in real space with long‐ and short‐range orders. The periodic potential in the crystal regulates the electron wave function and results in unique band structures, which further define the physical properties of the materials. Amorphous materials lack TS due to the randomization of distances and arrangements between atoms, causing the electron wave function to lack a well‐defined momentum. High entropy materials provide another way to break the TS by randomizing the potential strength at periodic atomic sites. The local elemental distribution has a great impact on physical properties in high entropy materials. It is critical to distinguish elements at the sub‐nanometer scale to uncover the correlations between the elemental distribution and the material properties. Here, the use of synchrotron X‐ray scanning tunneling microscopy (SX‐STM) with sub‐nm scale resolution in identifying elements on a high entropy alloy (HEA) surface is demonstrated. By examining the elementally sensitive X‐ray absorption spectra with an STM tip to enhance the spatial resolution, the elemental distribution on an HEA's surface at a sub‐nm scale is extracted. These results open a pathway towards quantitatively understanding high entropy materials and their material properties.

 
more » « less
Award ID(s):
2219416 2219489
NSF-PAR ID:
10524044
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
Volume:
36
Issue:
28
ISSN:
0935-9648
Page Range / eLocation ID:
202402442
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Topological crystalline insulators (TCIs) are new materials with metallic surface states protected by crystal symmetry. The properties of molecular beam epitaxy grown SnTe TCI on SrTiO3(001) are investigated using scanning tunneling microscopy (STM), noncontact atomic force microscopy, low‐energy and reflection high‐energy electron diffraction, X‐ray diffraction, Auger electron spectroscopy, and density functional theory. Initially, SnTe (111) and (001) surfaces are observed; however, the (001) surface dominates with increasing film thickness. The films grow island‐by‐island with the [011] direction of SnTe (001) islands rotated up to 7.5° from SrTiO3[010]. Microscopy reveals that this growth mechanism induces defects on different length scales and dimensions that affect the electronic properties, including point defects (0D); step edges (1D); grain boundaries between islands rotated up to several degrees; edge‐dislocation arrays (2D out‐of‐plane) that serve as periodic nucleation sites for pit growth (2D in‐plane); and screw dislocations (3D). These features cause variations in the surface electronic structure that appear in STM images as standing wave patterns and a nonuniform background superimposed on atomic features. The results indicate that both the growth process and the scanning probe tip can be used to induce symmetry breaking defects that may disrupt the topological states in a controlled way.

     
    more » « less
  2. Abstract

    We report the growth of self-assembled Bi2Se3quantum dots (QDs) by molecular beam epitaxy on GaAs substrates using the droplet epitaxy technique. The QD formation occurs after anneal of Bismuth droplets under Selenium flux. Characterization by atomic force microscopy, scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy and X-ray reflectance spectroscopy is presented. Raman spectra confirm the QD quality. The quantum dots are crystalline, with hexagonal shape, and have average dimensions of 12-nm height (12 quintuple layers) and 46-nm width, and a density of 8.5 × 109 cm−2. This droplet growth technique provides a means to produce topological insulator QDs in a reproducible and controllable way, providing convenient access to a promising quantum material with singular spin properties.

     
    more » « less
  3. Abstract

    High entropy oxides are a class of materials distinguished by the use of configurational entropy to drive material synthesis. These materials are being examined for their exciting physiochemical properties and hold promise in numerous fields, such as chemical sensing, electronics, and catalysis. Patterning and integration of high entropy materials into devices and platforms can be difficult due to their thermal sensitivity and incompatibility with many conventional thermally-based processing techniques. In this work, we present a laser-based technique, laser-induced thermal voxels, that combines the synthesis and patterning of high entropy oxides into a single process step, thereby allowing patterning of high entropy materials directly onto substrates. As a proof-of-concept, we target the synthesis and patterning of a well-characterized rock salt-phase high entropy oxide, (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O, as well as a spinel-phase high entropy oxide, (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)Cr2O4. We show through electron microscopy and x-ray analysis that the materials created are atomically homogenous and are primarily of the rock salt or spinel phase. These findings show the efficacy of laser induced thermal voxel processing for the synthesis and patterning of high entropy materials and enable new routes for integration of high entropy materials within microscale platform and devices.

     
    more » « less
  4. Abstract

    Lithium/fluorinated graphite (Li/CFx) primary batteries show great promise for applications in a wide range of energy storage systems due to their high energy density (>2100 Wh kg–1) and low self‐discharge rate (<0.5% per year at 25 °C). While the electrochemical performance of the CFxcathode is indeed promising, the discharge reaction mechanism is not thoroughly understood to date. In this article, a multiscale investigation of the CFxdischarge mechanism is performed using a novel cathode structure to minimize the carbon and fluorine additives for precise cathode characterizations. Titration gas chromatography, X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, cross‐sectional focused ion beam, high‐resolution transmission electron microscopy, and scanning transmission electron microscopy with electron energy loss spectroscopy are utilized to investigate this system. Results show no metallic lithium deposition or intercalation during the discharge reaction. Crystalline lithium fluoride particles uniformly distributed with <10 nm sizes into the CFxlayers, and carbon with lower sp2content similar to the hard‐carbon structure are the products during discharge. This work deepens the understanding of CFxas a high energy density cathode material and highlights the need for future investigations on primary battery materials to advance performance.

     
    more » « less
  5. Abstract

    For the first time, a transparent high‐entropy fluoride laser ceramic has been prepared and characterized. X‐ray diffraction (XRD) analysis of a CeNdCaSrBaF12(CNCSBF) transparent ceramic consolidated by vacuum hot pressing (VHP) reveals that Ce3+, Nd3+, Ca2+, Sr2+, and Ba2+have formed a single‐phased fluorite solid solution, with a lattice constant of 5.826 Å. Bulk density measurements produced a value of 6.15 g/cm3. Scanning electron microscopy (SEM) analysis of the ceramic revealed a uniform distribution of grain sizes in the material, with the average grain size being approximately 20 μm. The material exhibits a maximum in‐line transmittance of approximately 60% at 1000 nm. A near‐infrared range photoluminescence (PL) emission band was observed at 1057 nm, with a visible‐range PL emission band being located at 440 nm.

     
    more » « less