Sub-nanoliter volumes of the Belousov-Zhabotinsky (BZ) reaction are sealed in microfluidic devices made from polydimethylsiloxane (PDMS). Bromine, which is a BZ reaction intermediate that participates in the inhibitory pathway of the reaction, is known to permeate into PDMS, and it has been suggested that PDMS and bromine can react ( J. Phys. Chem. A. 108, 2004, 1325-1332). We characterize the extent to which PDMS affects BZ oscillations by varying the volume of the PDMS surrounding the BZ reactors. We measure how the oscillation period varies with PDMS volume and compare with a theoretical reaction-diffusion model, concluding that bromine reacts with PDMS. We demonstrate that minimizing the amount of PDMS by making the samples as thin as possible maximizes the number of oscillations before the BZ reaction reaches equilibrium and ceases to oscillate. We also demonstrate that the deleterious effects of the PDMS-BZ interactions are somewhat mitigated by imposing constant chemical boundary conditions through using a light-sensitive catalyst, ruthenium, in combination with patterned illumination. Furthermore, we show that light can modulate the frequency and phase of the BZ oscillators contained in a PDMS matrix by 20-30%.
more »
« less
Chemistry does general relativity: reaction-diffusion waves can model gravitational lensing
Gravitational lensing is a general relativistic (GR) phenomenon where a massive object redirects light, deflecting, magnifying, and sometimes multiplying its source. We use reaction-diffusion (RD) Belousov-Zhabotinsky (BZ) chemistry to study this astronomical effect in a table-top experiment. We experimentally observe BZ waves passing through non-planar, quasi-two-dimensional molds and reproduce the waveforms in computer simulations using planar RD waves propagating with variable diffusion. We tune the variable diffusion to match the Schwarzschild-coordinate light speed near a spherical mass so the RD propagation approximates Einstein’s famous light deflection relation. We discuss varying the diffusion or reaction rates with a gel matrix or with illumination, electric field, or temperature gradients.
more »
« less
- Award ID(s):
- 1852095
- PAR ID:
- 10524134
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Physics
- Volume:
- 11
- ISSN:
- 2296-424X
- Subject(s) / Keyword(s):
- Belousov-Zhabotinsky reaction gravitational lensing reaction-diffusion waves general relativity, Barkley model astrophysical analogs
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cardiac arrythmias are a form of heart disease that contributes toward making heart disease a significant cause of death globally. Irregular rhythms associated with cardiac arrythmias are thought to arise due to singularities in the heart tissue that generate reentrant waves in the underlying excitable medium. A normal approach to removing such singularities is to apply a high voltage electric shock, which effectively resets the phase of the cardiac cells. A concern with the use of this defibrillation technique is that the high-energy shock can cause lasting damage to the heart tissue. Various theoretical works have investigated lower-energy alternatives to defibrillation. In this work, we demonstrate the effectiveness of a low-energy defibrillation method in an experimental 2D Belousov–Zhabotinsky (BZ) system. When implemented as a 2D spatial reaction, the BZ reaction serves as an effective analog of general excitable media and supports regular and reentrant wave activity. The defibrillation technique employed involves targeted low-energy perturbations that can be used to “teleport” and/or annihilate singularities present in the excitable BZ medium.more » « less
-
Cell-like model chemical systems are powerful tools that can be used to explore the role of intercellular coupling on population level behaviors in communities of biological cells. We present a new method for fabricating such micro-reactors using the photosensitive Belousov–Zhabotinsky (BZ) reaction system employed in silica microparticles. These BZ micro-reactors have a tunable response to photochemical coupling, varying from a fully excitatory response to a fully inhibitory response. Their response can be tuned through variations in either the reactive mixture or, on an individual micro-reactor level, by changes in parameters used during the fabrication of the silica microparticles. A reaction–diffusion model is used to explore the physicochemical properties of the microparticles that lead to their tunable behavior.more » « less
-
Abstract We study families of analytic semigroups, acting on a Banach space, and depending on a parameter, and give sufficient conditions for existence of uniform with respect to the parameter norm bounds using spectral properties of the respective semigroup generators. In particular, we use estimates of the resolvent operators of the generators along vertical segments to estimate the growth/decay rate of the norm for the family of analytic semigroups. These results are applied to prove the Lyapunov linear stability of planar traveling waves of systems of reaction–diffusion equations, and the bidomain equation, important in electrophysiology.more » « less
-
After a theory of morphogenesis in chemical cells was introduced in the 1950s, much attention had been devoted to the numerical solution of reaction-diffusion (RD) partial differential equations (PDEs). The Crank–Nicolson (CN) method has been a common second-order time-stepping procedure. However, the CN method may introduce spurious oscillations for nonsmooth data unless the time step size is sufficiently small. This article studies a nonoscillatory second-order time-stepping procedure for RD equations, called a variable- θ method , as a perturbation of the CN method. In each time level, the new method detects points of potential oscillations to implicitly resolve the solution there. The proposed time-stepping procedure is nonoscillatory and of a second-order temporal accuracy. Various examples are given to show effectiveness of the method. The article also performs a sensitivity analysis for the numerical solution of biological pattern forming models to conclude that the numerical solution is much more sensitive to the spatial mesh resolution than the temporal one. As the spatial resolution becomes higher for an improved accuracy, the CN method may produce spurious oscillations, while the proposed method results in stable solutions.more » « less
An official website of the United States government

