skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Carnegie Supernova Project I and II: Measurements of H 0 Using Cepheid, Tip of the Red Giant Branch, and Surface Brightness Fluctuation Distance Calibration to Type Ia Supernovae*
Abstract

We present an analysis of Type Ia supernovae (SNe Ia) from the Carnegie Supernova Project I and II and extend the Hubble diagram from optical to near-infrared wavelengths (uBgVriYJH). We calculate the Hubble constant,H0, using various distance calibrators: Cepheids, the tip of the red giant branch (TRGB), and surface brightness fluctuations (SBFs). Combining all methods of calibration, we deriveH0= 71.76 ± 0.58 (stat) ± 1.19 (sys) km s−1Mpc−1from theBband andH0= 73.22 ± 0.68 (stat) ± 1.28 (sys) km s−1Mpc−1from theHband. By assigning equal weight to the Cepheid, TRGB, and SBF calibrators, we derive the systematic errors required for consistency in the first rung of the distance ladder, resulting in a systematic error of 1.2 ∼ 1.3 km s−1Mpc−1inH0. As a result, relative to the statistics-only uncertainty, the tension between the late-timeH0we derive by combining the various distance calibrators and the early-timeH0from the cosmic microwave background is reduced. The highest precision in SN Ia luminosity is found in theYband (0.12 ± 0.01 mag), as defined by the intrinsic scatter (σint). We revisit SN Ia Hubble residual-host mass correlations and recover previous results that these correlations do not change significantly between the optical and near-infrared wavelengths. Finally, SNe Ia that explode beyond 10 kpc from their host centers exhibit smaller dispersion in their luminosity, confirming our earlier findings. A reduced effect of dust in the outskirts of hosts may be responsible for this effect.

 
more » « less
NSF-PAR ID:
10524344
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
970
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 72
Size(s):
Article No. 72
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The tip of the red giant branch (TRGB) provides a luminous standard candle for constructing distance ladders to measure the Hubble constant. In practice, its measurements via edge-detection response (EDR) are complicated by the apparent fuzziness of the tip and the multipeak landscape of the EDR. Previously, we optimized an unsupervised algorithm, Comparative Analysis of TRGBs, to minimize the variance among multiple halo fields per host without relying on individualized choices, achieving state-of-the-art ∼<0.05 mag distance measures for optimal data. Here we apply this algorithm to an expanded sample of SN Ia hosts to standardize these to multiple fields in the geometric anchor, NGC 4258. In concert with the Pantheon+ SN Ia sample, this analysis produces a (baseline) result ofH0= 73.22 ± 2.06 km s−1Mpc−1. The largest difference inH0between this and similar studies employing the TRGB derives from corrections for SN survey differences and local flows used in the most recent SN Ia compilations that were absent in earlier studies. The SN-related differences total ∼2.0 km s−1Mpc−1. A smaller share, ∼1.4 km s−1Mpc−1, results from the inhomogeneity of the TRGB calibration across the distance ladder. We employ a grid of 108 variants around the optimal TRGB algorithm and find that the median of the variants is 72.94 ± 1.98 km s−1Mpc−1with an additional uncertainty due to algorithm choices of 0.83 km s−1Mpc−1. None of these TRGB variants result in anH0of less than 71.6 km s−1Mpc−1.

     
    more » « less
  2. Abstract The current Cepheid-calibrated distance ladder measurement of H 0 is reported to be in tension with the values inferred from the cosmic microwave background (CMB), assuming standard cosmology. However, some tip of the red giant branch (TRGB) estimates report H 0 in better agreement with the CMB. Hence, it is critical to reduce systematic uncertainties in local measurements to understand the Hubble tension. In this paper, we propose a uniform distance ladder between the second and third rungs, combining Type Ia supernovae (SNe Ia) observed by the Zwicky Transient Facility (ZTF) with a TRGB calibration of their absolute luminosity. A large, volume-limited sample of both calibrator and Hubble flow SNe Ia from the same survey minimizes two of the largest sources of systematics: host-galaxy bias and nonuniform photometric calibration. We present results from a pilot study using the existing TRGB distance to the host galaxy of ZTF SN Ia SN 2021rhu (aka ZTF21abiuvdk) in NGC7814. Combining the ZTF calibrator with a volume-limited sample from the first data release of ZTF Hubble flow SNe Ia, we infer H 0 = 76.94 ± 6.4 km s −1 Mpc −1 , an 8.3% measurement. The error budget is dominated by the single object calibrating the SN Ia luminosity in this pilot study. However, the ZTF sample includes already five other SNe Ia within ∼20 Mpc for which TRGB distances can be obtained with the Hubble Space Telescope. Finally, we present the prospects of building this distance ladder out to 80 Mpc with James Webb Space Telescope observations of more than 100 ZTF SNe Ia. 
    more » « less
  3. ABSTRACT

    The local distance ladder estimate of the Hubble constant (H0) is important in cosmology, given the recent tension with the early universe inference. We estimate H0 from the Type Ia supernova (SN Ia) distance ladder, inferring SN Ia distances with the hierarchical Bayesian SED model, BayeSN. This method has a notable advantage of being able to continuously model the optical and near-infrared (NIR) SN Ia light curves simultaneously. We use two independent distance indicators, Cepheids or the tip of the red giant branch (TRGB), to calibrate a Hubble-flow sample of 67 SNe Ia with optical and NIR data. We estimate H0 = 74.82 ± 0.97 (stat) $\pm \, 0.84$ (sys) km ${\rm s}^{-1}\, {\rm Mpc}^{-1}$ when using the calibration with Cepheid distances to 37 host galaxies of 41 SNe Ia, and 70.92 ± 1.14 (stat) $\pm \, 1.49$ (sys) km ${\rm s}^{-1}\, {\rm Mpc}^{-1}$ when using the calibration with TRGB distances to 15 host galaxies of 18 SNe Ia. For both methods, we find a low intrinsic scatter σint ≲ 0.1 mag. We test various selection criteria and do not find significant shifts in the estimate of H0. Simultaneous modelling of the optical and NIR yields up to ∼15  per cent reduction in H0 uncertainty compared to the equivalent optical-only cases. With improvements expected in other rungs of the distance ladder, leveraging joint optical-NIR SN Ia data can be critical to reducing the H0 error budget.

     
    more » « less
  4. null (Ed.)
    We present a new calibration of the peak absolute magnitude of Type Ia supernovae (SNe Ia) based on the surface brightness fluctuations (SBF) method, aimed at measuring the value of the Hubble constant. We build a sample of calibrating anchors consisting of 24 SNe hosted in galaxies that have SBF distance measurements. Applying a hierarchical Bayesian approach, we calibrate the SN Ia peak luminosity and extend the Hubble diagram into the Hubble flow by using a sample of 96 SNe Ia in the redshift range 0.02 <  z  < 0.075, which was extracted from the Combined Pantheon Sample. We estimate a value of H 0  = 70.50 ± 2.37 (stat.) ± 3.38 (sys.) km s −1 Mpc −1 (i.e., 3.4% stat., 4.8% sys.), which is in agreement with the value obtained using the tip of the red giant branch calibration. It is also consistent, within errors, with the value obtained from SNe Ia calibrated with Cepheids or the value inferred from the analysis of the cosmic microwave background. We find that the SNe Ia distance moduli calibrated with SBF are on average larger by 0.07 mag than those calibrated with Cepheids. Our results point to possible differences among SNe in different types of galaxies, which could originate from different local environments and/or progenitor properties of SNe Ia. Sampling different host galaxy types, SBF offers a complementary approach to using Cepheids, which is important in addressing possible systematics. As the SBF method has the ability to reach larger distances than Cepheids, the impending entry of the Vera C. Rubin Observatory and JWST into operation will increase the number of SNe Ia hosted in galaxies where SBF distances can be measured, making SBF measurements attractive for improving the calibration of SNe Ia, as well as in the estimation of H 0 . 
    more » « less
  5. Abstract

    Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲z≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher-zHST data with 42 SNe Ia atz< 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter,w. We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5σ−2.5σsignificance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 +w= −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measureH0= 75.9 ± 2.2 km s−1Mpc−1from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versusH0= 71.2 ± 3.8 km s−1Mpc−1using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 +w= −0.10 ± 0.09, and with optical and NIR data combined, we find 1 +w= −0.06 ± 0.07; these shifts of up to ∼0.11 inwcould point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low-zsamples, new light-curve models, calibration improvements, and eventually by building high-zsamples from the Roman Space Telescope.

     
    more » « less