skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is Carla grumpy? Analysis of peer evaluations to explore microaggressions and other marginalizing behaviors in engineering student teams
Abstract BackgroundTeamwork has become a central element of engineering education. However, the race‐ and gender‐based marginalization prevalent in society is also prevalent in engineering student teams. These problematic dynamics limit learning opportunities, isolate historically marginalized students, and ultimately push students away from engineering, further reinforcing the demographic imbalances in the profession. PurposeWhile there are strategies to improve the experiences of marginalized students within teams, there are few tools for detecting marginalizing behaviors as they occur. The purpose of this work is to examine how peer evaluations collected as a normal part of an engineering course can be used as a window into team dynamics to reveal marginalization as it occurs. MethodWe used a semester of peer evaluation data from a large engineering course in which a team project is the central assignment and peer evaluation occurs four times during the course. We designed an algorithm to identify teams where marginalization may be occurring. We then performed qualitative analyses using a sociolinguistic analysis. ResultsResults show that the algorithm helps identify teams where marginalization occurs. Qualitative analyses of four illustrative cases demonstrated the stealth appearance and evolution of marginalization, providing strong evidence that hidden within language of peer evaluation are indicators of marginalization. Based on the wider dataset, we present a taxonomy (eight categories) of linguistic marginalization appearing in peer comments. ConclusionBoth peer evaluation scores and the language used in peer evaluations can reveal team inequities and may serve as a near‐real‐time mechanism to interrupt marginalization within engineering teams.  more » « less
Award ID(s):
1936778
PAR ID:
10524373
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
113
Issue:
3
ISSN:
1069-4730
Format(s):
Medium: X Size: p. 603-634
Size(s):
p. 603-634
Sponsoring Org:
National Science Foundation
More Like this
  1. Teaching engineering students how to work in teams is necessary, important, and hard to do well. Minoritized students experience forms of marginalization from their teammates routinely, which affects their access to safe learning environments. Team evaluation tools like CATME can help instructors see where teaming problems are, but are often normed in ways that obscure the subtle if pervasive harassment of minoritized teammates. Instructors, particularly of large courses, need better ways to identify teams that are marginalizing minoritized team members. This paper introduces theory on microaggressions, selective incivility theory, and coded language to interpret data collected from a complex study site during the COVID-19 pandemic. The team collected data from classroom observations (moved virtual during COVID), interviews with instructors, interviews with students, interpretations of historical data collected through an online team evaluation tool called CATME, and a diary study where students documented their reflections on their marginalization by teammates. While data collection and analysis did not, of course, go as the research team had planned, it yielded insights into how frequently minoritized teammates experience marginalization, instructors’ sense of their responsibility and skill for addressing such, marginalization, and students’ sense of defeat in hoping for more equitable and supportive learning environments. The paper describes our data collection processes, analysis, and some choice insights drawn from this multi-year study at a large, research-extensive white university. 
    more » « less
  2. PurposeThe purpose of this study was to examine the experiences of multiple campus teams as they engaged in the assessment of their science, technology, engineering and mathematics (STEM) mentoring ecosystems within a peer assessment dialogue exercise. Design/methodology/approachThis project utilized a qualitative multicase study method involving six campus teams, drawing upon completed inventory and visual mapping artefacts, session observations and debriefing interviews. The campuses included research universities, small colleges and minority-serving institutions (MSIs) across the United States of America. The authors analysed which features of the peer assessment dialogue exercise scaffolded participants' learning about ecosystem synergies and threats. FindingsThe results illustrated the benefit of instructor modelling, intra-team process time and multiple rounds of peer assessment. Participants gained new insights into their own campuses and an increased sense of possibility by dialoguing with peer campuses. Research limitations/implicationsThis project involved teams from a small set of institutions, relying on observational and self-reported debriefing data. Future research could centre perspectives of institutional leaders. Practical implicationsThe authors recommend dedicating time to the institutional assessment of mentoring ecosystems. Investing in a campus-wide mentoring infrastructure could align with campus equity goals. Originality/valueIn contrast to studies that have focussed solely on programmatic outcomes of mentoring, this study explored strategies to strengthen institutional mentoring ecosystems in higher education, with a focus on peer assessment, dialogue and learning exercises. 
    more » « less
  3. eer mentoring in college programs of study is not uncommon. However, most of the time, peer mentoring is focused on supporting students in traditional solving problems they are assigned as part of the coursework. Our work extends beyond examining conventional forms of peer mentoring by examining the work of peer mentors supporting students' work in a first-year engineering design course based in a makerspace classroom. The problems students solve in the makerspace classroom-based course typically have a wide array of possible solutions, which differs from many problems students solve in traditional courses with peer mentor support in which there is a single solution. Further, students in the makerspace classroom-based course are also expected to work in teams, which adds another layer of complexity to the role of the peer mentors working in the course. Our research goal was to empirically document the peer mentors' interactions with students and the students learning gains and development due to working with the peer mentors. To gather data from the students working with the peer mentors, we added a series of additional questions to their end-of-semester course evaluations. Note that the university's Institutional Review Board reviewed and approved this process. The questions we added included, "Please share how the peer mentors influenced your sense of belonging within the College of Engineering." "Please share how the peer mentors helped your group function as teams." and "Please share how the peer mentors helped you develop confidence in your abilities to do engineering." We also included companion Likert scale items such as "The peer mentors helped our team work together." and "The peer mentors helped us resolve conflicts in our group." We found that peer mentors tended to be perceived as a resource, supportive and reassuring to the students and meeting the students where they are. Thus, the mentors provided students with emotional, personal, and technical support to influence the students' sense of belonging to the college. The mentors helped the students function in teams by encouraging them to collaborate and include all. In their efforts to help students develop confidence in their abilities, the mentors worked to meet the students where they were at and reassured the students' capacity to succeed. They were also likely to encourage students to seek help, support their technical skill development, and encourage the students to apply their knowledge. The final focus of our research was on the mentors engaging in helping students feel part of the engineering community. We found the mentors encouraged the students to join an engineering club or attend engineering events. In our final report, we provide details of our data, both quantitative and qualitative, examples of the student's responses, the implications of our findings, and ideas for using our research to support mentor preparation programs to maximize the benefits of peer mentoring in maker spaces and other non-traditional engineering learning environments. 
    more » « less
  4. Abstract BackgroundEngineering requires new solutions to improve undergraduate performance outcomes, including course grades and continued enrollment in engineering pathways. Belonging and engineering role identity have long been associated with successful outcomes in engineering, including academic success, retention, and well‐being. PurposeWe measure the relationships between belonging and role identity at the beginning of a first‐year engineering course with course grade and continued enrollment in engineering courses. We test the effect of an ecological belonging intervention on student belonging, course grade, and persistence. MethodStudents (n = 834) reported their sense of belonging in engineering, cross‐racial experiences, engineering performance/competence, interest in engineering, and engineering recognition before and after an in‐class intervention to improve classroom belonging ecology. Through a series of longitudinal multigroup path analyses, a form of structural equation modeling, we tested the predictive relationships of the measured constructs with engineering identity and investigated differences in these relationships by student gender and race/ethnicity. FindingsThe proposed model predicts course grades and continued enrollment, providing insight into the potential for interventions to support first‐year engineering students. Group analysis results demonstrate the difference in the function of these psychosocial measures for women and Black, Latino/a/x, and Indigenous (BLI) students, providing insights into the potential importance of sociocultural interventions within engineering classrooms to improve the engineering climate, engagement, and retention of students. ImplicationsThe results highlight the need for more specific, nuanced theoretical investigations of how marginalized students experience the engineering environment and develop social belonging and engineering role identity. 
    more » « less
  5. Peer evaluations are critical for assessing teams, but are susceptible to bias and other factors that undermine their reliability. At the same time, collaborative tools that teams commonly use to perform their work are increasingly capable of logging activity that can signal useful information about individual contributions and teamwork. To investigate current and potential uses for activity traces in peer evaluation tools, we interviewed (N=11) and surveyed (N=242) students and interviewed (N=10) instructors at a single university. We found that nearly all of the students surveyed considered specific contributions to the team outcomes when evaluating their teammates, but also reported relying on memory and subjective experiences to make the assessment. Instructors desired objective sources of data to address challenges with administering and interpreting peer evaluations, and have already begun incorporating activity traces from collaborative tools into their evaluations of teams. However, both students and instructors expressed concern about using activity traces due to the diverse ecosystem of tools and platforms used by teams and the limited view into the context of the contributions. Based on our findings, we contribute recommendations and a speculative design for a data-centric peer evaluation tool. 
    more » « less