skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


This content will become publicly available on July 14, 2025

Title: Lithium and water: Hydrosocial impacts across the life cycle of energy storage
Abstract As a key ingredient of batteries for electric vehicles (EVs), lithium plays a significant role in climate change mitigation, but lithium has considerable impacts on water and society across its life cycle. Upstream extraction methods—including open‐pit mining, brine evaporation, and novel direct lithium extraction (DLE)—and downstream processes present different impacts on both the quantity and quality of water resources, leading to water depletion and contamination. Regarding upstream extraction, it is critical for a comprehensive assessment of lithium's life cycle to include cumulative impacts related not only to freshwater, but also mineralized or saline groundwater, also known as brine. Legal frameworks have obscured social and ecological impacts by treating brine as a mineral rather than water in regulation of lithium extraction through brine evaporation. Analysis of cumulative impacts across the lifespan of lithium reveals not only water impacts in conventional open‐pit mining and brine evaporation, but also significant freshwater needs for DLE technologies, as well as burdens on fenceline communities related to wastewater in processing, chemical contaminants in battery manufacturing, water use for cooling in energy storage, and water quality hazards in recycling. Water analysis in lithium life cycle assessments (LCAs) tends to exclude brine and lack hydrosocial context on the environmental justice implications of water use by life cycle stage. New research directions might benefit from taking a more community‐engaged and cradle‐to‐cradle approach to lithium LCAs, including regionalized impact analysis of freshwater use in DLE, as well as wastewater pollution, cooling water, and recycling hazards from downstream processes. This article is categorized under:Human Water > Human WaterHuman Water > Water GovernanceHuman Water > Water as Imagined and RepresentedScience of Water > Water and Environmental Change  more » « less
Award ID(s):
2215409
PAR ID:
10524537
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
WIREs Water
Date Published:
Journal Name:
WIREs Water
ISSN:
2049-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Twin Falls, Idaho wastewater treatment plant (WWTP), currently operates solely to achieve regulatory permit compliance. Research was conducted to evaluate conversion of the WWTP to a water resource recovery facility (WRRF) and to assess the WRRF environmental sustainability; process configurations were evaluated to produce five resources—reclaimed water, biosolids, struvite, biogas, and bioplastics (polyhydroxyalkanoates, PHA). PHA production occurred using fermented dairy manure. State‐of‐the‐art biokinetic modeling, performed using Dynamita's SUMO process model, was coupled with environmental life cycle assessment to quantify environmental sustainability. Results indicate that electricity production via combined heat and power (CHP) was most important in achieving environmental sustainability; energy offset ranged from 43% to 60%, thereby reducing demand for external fossil fuel‐based energy. While struvite production helps maintain a resilient enhanced biological phosphorus removal (EBPR) process, MgO2production exhibits negative environmental impacts; integration with CHP negates the adverse consequences. Integrating dairy manure to produce bioplastics diversifies the resource recovery portfolio while maintaining WRRF environmental sustainability; pilot‐scale evaluations demonstrated that WRRF effluent quality was not affected by the addition of effluent from PHA production. Collectively, results show that a WRRF integrating dairy manure can yield a diverse portfolio of products while operating in an environmentally sustainable manner. Practitioner pointsWastewater carbon recovery via anaerobic digestion with combined heat/power production significantly reduces water resource recovery facility (WRRF) environmental emissions.Wastewater phosphorus recovery is of value; however, struvite production exhibits negative environmental impacts due to MgO2production emissions.Bioplastics production on imported organic‐rich agri‐food waste can diversify the WRRF portfolio.Dairy manure can be successfully integrated into a WRRF for bioplastics production without compromising WRRF performance.Diversifying the WRRF products portfolio is a strategy to maximize resource recovery from wastewater while concurrently achieving environmental sustainability. 
    more » « less
  2. Life Cycle Analysis (LCA) has long been utilized for decision making about the sustainability of products. LCA provides information about the total emissions generated for a given functional unit of a product, which is utilized by industries or consumers for comparing two products with regards to environmental performance. However, many existing LCAs utilize data that is representative of an average system with regards to life cycle stage, thus providing an aggregate picture. It has been shown that regional variation may lead to large variation in the environmental impacts of a product, specifically dealing with energy consumption, related emissions and resource consumptions. Hence, improving the reliability of LCA results for decision making with regards to environmental performance needs regional models to be incorporated for building a life cycle inventory that is representative of the origin of products from a certain region. In this work, we present the integration of regionalized data from process systems models and other sources to build regional LCA models and quantify the spatial variations per unit of biodiesel produced in the state of Indiana for environmental impact. In order to include regional variation, we have incorporated information about plant capacity for producing biodiesel from North and Central Indiana. The LCA model built is a cradle-to-gate. Once the region-specific models are built, the data were utilized in SimaPro to integrate with upstream processes to perform a life cycle impact assessment (LCIA). We report the results per liter of biodiesel from northern and central Indiana facilities in this work. The impact categories studied were global warming potential (kg CO2 eq) and freshwater eutrophication (kg P eq). While there were a lot of variations at individual county level, both regions had a similar global warming potential impact and the northern region had relatively lower eutrophication impacts. 
    more » « less
  3. Abstract Energy transitions are reshaping hydrosocial relations. How they will be reshaped, however, depends on location and water's material relationship to other resources and industrial activities embedded within energy transitions. To highlight this, we focus on three different resources—coal, natural gas, and lithium—to signal how the water–energy nexus will be reworked in a transition away from fossil fuels. We examine the water–coal nexus as an example of a resource relationship that is transitioningout, or that is being moved away from in the green energy transition. Natural gas represents the “bridge fuel” usedthroughthe transition. Lithium illustrates a resourceinsidethe green transition, as it is a fundamental material for green technologiesinthe transition to a low‐carbon future. Coal, natural gas, and lithium each have their own material impacts to water resources that stem from their industrial lifecycle and different implications for communities shaped by coal, natural gas, and lithium activities. To explore this, we review each of these resources' connection to water, their legal and regulatory dimensions, and their impact on communities and water justice. We argue that the energy transition is also a hydrosocial transition that will create uneven water‐related benefits and burdens. To maximize sustainability and equity, efforts to decarbonize energy systems must examine the localized, place‐based hydrosocial relations that differentially affect communities. This article is categorized under:Engineering Water > Planning WaterHuman Water > Water GovernanceHuman Water > Rights to Water 
    more » « less
  4. Abstract Salt pollution is a threat to freshwater ecosystems. Anthropogenic salt inputs increase lake and stream salinity, and consequently change aquatic ecosystem structure and function. Elevated salt concentrations impact species directly not only through osmoregulatory stress, but also through community‐level feedbacks that change the flow of energy and materials through food webs. Here, we discuss the implications of road salt pollution on freshwater rivers and lakes and how “one size fits all” ecotoxicity thresholds may not adequately protect aquatic organisms. This article is categorized under:Science of Water > Water QualityWater and Life > Nature of Freshwater EcosystemsWater and Life > Stresses and Pressures on Ecosystems 
    more » « less
  5. Advances in hydraulic fracturing (aka “fracking”) technologies and horizontal drilling have enabled the extraction of previously unviable unconventional oil and gas resources. However, as global environmental concerns have become more prominent and unconventional oil and gas developments have moved ever closer to residential centers, public scrutiny of the industry and its methods and impacts of extraction have increased. Water impacts feature prominently among the contemporary societal concerns about fracking. These concerns include the large water requirements of the process itself, as well as concerns about the potential pollution of groundwater and the (underground) environment more broadly. Anthropologists have undertaken qualitative field research on unconventional gas developments in a variety of settings, largely among local communities in regions of extraction. The perspectives employed by anthropologists are commonly drawn from the broader social science literature, including the anthropology of water and natural resources, science and technology studies, studies of social movements, and studies which examine the energy‐society nexus. Based on the shortcomings of the published anthropological accounts, interdisciplinary research collaboration with hydrologists, engineers and economists, as well as a more fulsome engagement with the variety of hopes, fears and dreams of fracking and unconventional gas, is recommended.WIREs Water2018, 5:e1272. doi: 10.1002/wat2.1272 This article is categorized under:Engineering Water > Sustainable Engineering of WaterScience of Water > Water QualityHuman Water > Methods 
    more » « less