Supercells in landfalling tropical cyclones (TCs) often produce tornadoes within 50 km of the coastline. The prevalence of TC tornadoes near the coast is not explained by the synoptic environments of the TC, suggesting a mesoscale influence is likely. Past case studies point to thermodynamic contrasts between ocean and land or convergence along the coast as a possible mechanism for enhancing supercell mesocyclones and storm intensity. This study augments past work by examining the changes in the hurricane boundary layer over land in the context of vertical wind shear. Using ground-based single- and dual-Doppler radar analyses, we show that the reduction in the boundary layer wind results in an increase in vertical wind shear/storm-relative helicity inland of the coast. We also show that convergence along the coast may be impactful to supercells as they cross the coastal boundary. Finally, we briefly document the changes in mesocyclone vertical vorticity to assess how the environmental changes may impact individual supercells.
more »
« less
Tropical Cyclone Supercell Response to the Coast Using a Climatology of Radar‐Derived Azimuthal Shear
Supercells in landfalling tropical cyclones (TCs) often produce tornadoes that can cause fatalities and extensive damage. In previous studies, many tornadoes have been shown to form <50 km from the coast, and their parent storms may also intensify as they cross the coastal boundary. This study uses WSR‐88D observations of TC tornadic mesocyclones from 2011 to 2018 to examine changes in their low‐level rotation upon moving onshore. We will show that radar‐derived azimuthal shear tends to increase in storms that cross the coastal boundary. Similar intensification trends are also found in radar‐derived (supercell) storm‐scale divergence, such that storm‐scale convergence increases as storms move onshore. It is likely changes in the near‐coast vertical wind shear and/or near‐shore convergence helps explain supercell intensification, which is important to consider particularly in operational settings.
more »
« less
- Award ID(s):
- 2028151
- PAR ID:
- 10524752
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 22
- ISSN:
- 0094-8276
- Subject(s) / Keyword(s):
- radar meteorology tropical cyclone tornado supercell
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The response of severe local storms to environmental evolution across the early evening transition (EET) remains a forecasting challenge, particularly within the context of the Southeast US storm climatology, which includes the increased presence of low-CAPE environments and tornadic non-supercell modes. To disentangle these complex environmental interactions, Southeast severe convective reports spanning 2003-2018 are temporally binned relative to local sunset. Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Lastly, statistical analysis is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic (or significantly tornadic) and nontornadic storms towards constructing new sounding-derived forecast guidance parameters for multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC environments, particularly for non-supercell (e.g., quasi-linear convective system) modes. These low-CAPE environments sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize post-sunset – potentially compensating for minimal buoyancy. Furthermore, the existence of HSLC storm environments pre-sunset increases the likelihood of non-supercellular tornadoes post-sunset. Existing forecast guidance metrics such as the significant tornado parameter (STP) remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering variables like precipitable water, downdraft CAPE, and effective inflow base.more » « less
-
Abstract A total of 257 supercell proximity soundings obtained for field programs over the central United States are compared with profiles extracted from the SPC mesoscale analysis system (the SFCOA) to understand how errors in the SFCOA and in its baseline model analysis system—the RUC/RAP—might impact climatological assessments of supercell environments. A primary result is that the SFCOA underestimates the low-level storm-relative winds and wind shear, a clear consequence of the lack of vertical resolution near the ground. The near-ground (≤500 m) wind shear is underestimated similarly in near-field, far-field, tornadic, and nontornadic supercell environments. The near-ground storm-relative winds, however, are underestimated the most in the near-field and in tornadic supercell environments. Underprediction of storm-relative winds is, therefore, a likely contributor to the lack of differences in storm-relative winds between nontornadic and tornadic supercell environments in past studies that use RUC/RAP-based analyses. Furthermore, these storm-relative wind errors could lead to an under emphasis of deep-layer SRH variables relative to shallower SRH in discriminating nontornadic from tornadic supercells. The mean critical angles are 5°–15° larger and farther from 90° in the observed soundings than in the SFCOA, particularly in the near field, likely indicating that the ratio of streamwise to crosswise horizontal vorticity is often smaller than that suggested by the SFCOA profiles. Errors in thermodynamic variables are less prevalent, but show low-level CAPE to be too low closer to the storms, a dry bias above the boundary layer, and the absence of shallow near-ground stable layers that are much more prevalent in tornadic supercell environments. Significance Statement A total of 257 radiosonde observations taken close to supercell thunderstorms during field programs over the last 25 years are compared with a model-based analysis system (the SFCOA), which is often used for studying supercell thunderstorm environments. We present error characteristics of the SFCOA as they relate to tornado production and distance to the storm to clarify interpretations of environments favorable for tornado production made from past studies that use the SFCOA. A primary result is that the SFCOA underpredicts the speed and shear of the air flowing toward the storm in many cases, which may lead to different interpretations of variables that are most important for discriminating tornadic from nontornadic supercell thunderstorms. These results help to refine our understanding of the conditions that support tornado formation, which provides guidance on environmental cues that can improve the prediction of supercell tornadoes.more » « less
-
null (Ed.)Abstract On 24 May 2016, a supercell that produced 13 tornadoes near Dodge City, Kansas, was documented by a rapid-scanning, X-band, polarimetric, Doppler radar (RaXPol). The anomalous nature of this storm, particularly the significant deviations in storm motion from the mean flow and number of tornadoes produced, is examined and discussed. RaXPol observed nine tornadoes with peak radar-derived intensities (Δ V max ) and durations ranging from weak (~60 m s −1 ) and short lived (<30 s) to intense (>150 m s −1 ) and long lived (>25 min). This case builds on previous studies of tornado debris signature (TDS) evolution with continuous near-surface sampling of multiple strong tornadoes. The TDS sizes increased as the tornadoes intensified but lacked direct correspondence to tornado intensity otherwise. The most significant growth of the TDS in both cases was linked to two substantial rear-flank-downdraft surges and subsequent debris ejections, resulting in growth of the TDSs to more than 3 times their original sizes. The TDS was also observed to continue its growth as the tornadoes decayed and lofted debris fell back to the surface. The TDS size and polarimetric composition were also found to correspond closely to the underlying surface cover, which resulted in reductions in Z DR in wheat fields and growth of the TDS in terraced dirt fields as a result of ground scouring. TDS growth with respect to tornado vortex tilt is also discussed.more » « less
-
Abstract The magnitude of water vapor content within the near-storm inflow can either support or deter the storm’s upscale growth and maintenance. However, the heterogeneity of the moisture field near storms remains poorly understood because the operational observation network lacks detail. This observational study illustrates that near-storm inflow water vapor environments are both significantly heterogeneous and different than the far-inflow storm environment. This study also depicts the importance of temporal variation of water vapor mixing ratio (WVMR) to instability during the peak tornadic seasons in the U.S. Southeast and Great Plains regions during the Verification of the Origins of Rotation in Tornadoes Experiment Southeast 2018 (VSE18) campaign and the Targeted Observation by Radar and UAS of Supercells (TORUS) campaign, respectively. VSE18 results suggest that the surface processes control WVMR variation significantly in lower levels, with the highest WVMR mainly located near the surface in inflows in the southeast region. In contrast, TORUS results show more vertically homogeneous WVMR profiles and rather uniform water vapor distribution variation occurring in deep, moist stratified inflows in the Great Plains region. Temporal water vapor variations within 5-min periods could lead to over 1000 J kg −1 CAPE changes in both VSE18 and TORUS, which represent significant potential buoyancy perturbations for storms to intensify or decay. These temporal water vapor and instability evolutions of moving storms remain difficult to capture via radiosondes and fixed in situ or profiling instrumentation, yet may exert a strong impact on storm evolution. This study suggests that improving observations of the variability of near-storm inflow moisture can accurately refine a potential severe weather threat. Significance Statement It has long been recognized that better observations of the planetary boundary layer (PBL) inflow near convective storms are needed to improve severe weather forecasting. The current operational networks essentially do not provide profile measurements of the PBL, except for the sparsely spaced 12-hourly sounding network. More frequent geostationary satellite observations do not provide adequately high vertical resolution in the PBL. This study uses airborne lidar profiler measurements to examine moisture in the inflow region of convective storms in the Great Plains and the southeastern United States during their respective tornadic seasons. Rapid PBL water vapor variations on a ∼5 min time scale can lead to CAPE perturbations exceeding 1000 J kg −1 , representing significant perturbations that could promote storm intensification or decay. Severe thunderstorms may generate high-impact weather phenomena, such as tornadoes, high winds, hail, and heavy rainfall, which have substantial socioeconomic impacts. Ultimately, by contrasting characteristics of the convective storm inflow in the two regions, this study may lead to a more accurate assessment of severe weather threats.more » « less
An official website of the United States government

