skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interconnecting global threats: climate change, biodiversity loss, and infectious diseases
The concurrent pressures of rising global temperatures, rates and incidence of species decline, and emergence of infectious diseases represent an unprecedented planetary crisis. Intergovernmental reports have drawn focus to the escalating climate and biodiversity crises and the connections between them, but interactions among all three pressures have been largely overlooked. Non-linearities and dampening and reinforcing interactions among pressures make considering interconnections essential to anticipating planetary challenges. In this Review, we define and exemplify the causal pathways that link the three global pressures of climate change, biodiversity loss, and infectious disease. A literature assessment and case studies show that the mechanisms between certain pairs of pressures are better understood than others and that the full triad of interactions is rarely considered. Although challenges to evaluating these interactions—including a mismatch in scales, data availability, and methods—are substantial, current approaches would benefit from expanding scientific cultures to embrace interdisciplinarity and from integrating animal, human, and environmental perspectives. Considering the full suite of connections would be transformative for planetary health by identifying potential for co-benefits and mutually beneficial scenarios, and highlighting where a narrow focus on solutions to one pressure might aggravate another.  more » « less
Award ID(s):
2011147
PAR ID:
10524921
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Lancet Planetary Health
Date Published:
Journal Name:
The Lancet Planetary Health
Volume:
8
Issue:
4
ISSN:
2542-5196
Page Range / eLocation ID:
e270 to e283
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In an era where human influence pervades every corner of the natural world, improving our understanding the how ecosystems are structured and function has never been more critical. Dryland ecosystems, occupying over 40% of the plant’s land surface area, represent the largest terrestrial biome on earth. Drylands are particularly vulnerable to global change pressures such as rising temperatures, altered precipitation regimes, and the spread of invasive species. The Earth's climate is changing rapidly, exacerbating these pressures and threatening the productivity, biodiversity, and function of dryland ecosystems. The interactions between these shifting pressures and disturbances, both natural and anthropogenic, add layers of complexity that challenge our understanding of these ecosystems. In my dissertation, I used a combination of observational and experimental studies to investigate the impacts of disturbances on vegetation within dryland ecosystems, focusing particularly on the interactions between climate and biological factors known to influence the structure and function of plants. A rainfall manipulation and mechanical disturbance experiment repeated in three climatically distinct North America dryland ecosystems revealed complex, site-specific responses of dominant shrubs to environmental stressors. Findings indicated that individual traits, such as plant size, significantly influence sensitivity to climate changes, highlighting the need for localized management strategies. A study assessing the trophic impacts from a native twig girdling beetle on the above ground biomass of honey mesquite (Prosopis glandulosa) found significant year-to-year variability in beetle activity, with notable reductions in mesquite biomass due to girdling that exceeded estimates for annual net primary production for some years. A study assessing the influence of fire on biodiversity of soil seed bank across the Mojave found increased diversity in burned areas, but highlights the dominance of invasive species, ultimately leading to biodiversity loss and community homogenization. These findings underscore the significant impact of invasive species and the necessity of management practices to mitigate their spread. Collectively, this dissertation provides a nuanced understanding of how natural and novel disturbance regimes affect dryland ecosystems. The differential responses among species and ecosystems suggest that effective management strategies must consider local ecological contexts to preserve productivity and biodiversity amidst rapidly changing global pressures. 
    more » « less
  2. Feedbacks are an essential feature of resilient socio-economic systems, yet the feedbacks between biodiversity, ecosystem services and human wellbeing are not fully accounted for in global policy efforts that consider future scenarios for human activities and their consequences for nature. Failure to integrate feedbacks in our knowledge frameworks exacerbates uncertainty in future projections and potentially prevents us from realizing the full benefits of actions we can take to enhance sustainability. We identify six scientific research challenges that, if addressed, could allow future policy, conservation and monitoring efforts to quantitatively account for ecosystem and societal consequences of biodiversity change. Placing feedbacks prominently in our frameworks would lead to (i) coordinated observation of biodiversity change, ecosystem functions and human actions, (ii) joint experiment and observation programmes, (iii) more effective use of emerging technologies in biodiversity science and policy, and (iv) a more inclusive and integrated global community of biodiversity observers. To meet these challenges, we outline a five-point action plan for collaboration and connection among scientists and policymakers that emphasizes diversity, inclusion and open access. Efforts to protect biodiversity require the best possible scientific understanding of human activities, biodiversity trends, ecosystem functions and—critically—the feedbacks among them. 
    more » « less
  3. Our world is undergoing rapid planetary changes driven by human activities, often mediated by economic incentives and resource management, affecting all life on Earth. Concurrently, many infectious diseases have recently emerged or spread into new populations. Mounting evidence suggests that global change—including climate change, land-use change, urbanization, and global movement of individuals, species, and goods—may be accelerating disease emergence by reshaping ecological systems in concert with socioeconomic factors. Here, we review insights, approaches, and mechanisms by which global change drives disease emergence from a disease ecology perspective. We aim to spur more interdisciplinary collaboration with economists and identification of more effective and sustainable interventions to prevent disease emergence. While almost all infectious diseases change in response to global change, the mechanisms and directions of these effects are system specific, requiring new, integrated approaches to disease control that recognize linkages between environmental and economic sustainability and human and planetary health. Expected final online publication date for the Annual Review of Resource Economics, Volume 14 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  4. Abstract AimAddressing global environmental challenges requires access to biodiversity data across wide spatial, temporal and taxonomic scales. Availability of such data has increased exponentially recently with the proliferation of biodiversity databases. However, heterogeneous coverage, protocols, and standards have hampered integration among these databases. To stimulate the next stage of data integration, here we present a synthesis of major databases, and investigate (a) how the coverage of databases varies across taxonomy, space, and record type; (b) what degree of integration is present among databases; (c) how integration of databases can increase biodiversity knowledge; and (d) the barriers to database integration. LocationGlobal. Time periodContemporary. Major taxa studiedPlants and vertebrates. MethodsWe reviewed 12 established biodiversity databases that mainly focus on geographic distributions and functional traits at global scale. We synthesized information from these databases to assess the status of their integration and major knowledge gaps and barriers to full integration. We estimated how improved integration can increase the data coverage for terrestrial plants and vertebrates. ResultsEvery database reviewed had a unique focus of data coverage. Exchanges of biodiversity information were common among databases, although not always clearly documented. Functional trait databases were more isolated than those pertaining to species distributions. Variation and potential incompatibility of taxonomic systems used by different databases posed a major barrier to data integration. We found that integration of distribution databases could lead to increased taxonomic coverage that corresponds to 23 years’ advancement in data accumulation, and improvement in taxonomic coverage could be as high as 22.4% for trait databases. Main conclusionsRapid increases in biodiversity knowledge can be achieved through the integration of databases, providing the data necessary to address critical environmental challenges. Full integration across databases will require tackling the major impediments to data integration: taxonomic incompatibility, lags in data exchange, barriers to effective data synchronization, and isolation of individual initiatives. 
    more » « less
  5. null (Ed.)
    Predicting the effects of multiple global change stressors on microbial communities remains a challenge because of the complex interactions among those factors. Here, we explore the combined effects of major global change stressors on nutrient acquisition traits in marine phytoplankton. Nutrient limitation constrains phytoplankton production in large parts of the present-day oceans, and is expected to increase owing to climate change, potentially favouring small phytoplankton that are better adapted to oligotrophic conditions. However, other stressors, such as elevated p CO 2 , rising temperatures and higher light levels, may reduce general metabolic and photosynthetic costs, allowing the reallocation of energy to the acquisition of increasingly limiting nutrients. We propose that this energy reallocation in response to major global change stressors may be more effective in large-celled phytoplankton species and, thus, could indirectly benefit large-more than small-celled phytoplankton, offsetting, at least partially, competitive disadvantages of large cells in a future ocean. Thus, considering the size-dependent responses to multiple stressors may provide a more nuanced understanding of how different microbial groups would fare in the future climate and what effects that would have on ecosystem functioning. This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’. 
    more » « less