Female competitive behaviors during courtship can have substantial fitness consequences, yet we know little about the physiological and social mechanisms underlying these behaviors—particularly for females of polygynous lek mating species. We explored the hormonal and social drivers of female intersexual and intrasexual behavior during courtship by males in a captive population of Indian peafowl. We investigated whether (1) female non-stress induced circulating estradiol (E2) and corticosterone (CORT) levels or (2) female dominance status in a dyad predicts female solicitation behavior. We also tested whether female circulating E2 and CORT predict dominant females’ aggressive behaviors toward subordinate females in the courtship context. Our findings demonstrate that females with higher levels of circulating E2 as well as higher levels of circulating CORT solicit more courtships from males. Dominant females also solicit more courtships from males than subordinate females. Female intrasexual aggressive behaviors during courtship, however, were not associated with circulating levels of E2 or CORT. Overall, we conclude that circulating steroid hormones in conjunction with social dominance might play a role in mediating female behaviors associated with competition for mates. Experimental manipulation and measures of hormonal flexibility throughout the breeding season in relation to competitive and sexual behaviors will be necessary to further examine the link between hormonal mechanisms and female behavior in polygynous lekking systems.
Exposure to multiple environmental stressors is a common occurrence that can affect organisms in predictable or unpredictable ways. Hypoxia and turbidity in aquatic environments are 2 stressors that can affect reproductive behaviors by altering energy availability and the visual environment, respectively. Here we examine the relative effects of population and the rearing environment (oxygen concentration and turbidity) on reproductive behaviors. We reared cichlid fish (the Egyptian mouthbrooder, Pseudocrenilabrus multicolor) from 2 populations (a swamp and river) until sexual maturity, in a full factorial design (hypoxic/normoxic × clear/turbid) and then quantified male competitive and courtship behaviors and female preference under their respective rearing conditions. Overall, we found that the rearing environment was more important than population for determining behavior, indicating there were few heritable differences in reproductive behavior between the 2 populations. Unexpectedly, males in the hypoxic rearing treatment performed more competitive and courtship behaviors. Under turbid conditions, males performed fewer competitive and courtship behaviors. We predicted that females would prefer males from their own population. However, under the hypoxic and turbid combination females from both populations preferred males from the other population. Our results suggest that reproductive behaviors are affected by interactions among male traits, female preferences, and environmental conditions.
more » « less- NSF-PAR ID:
- 10524980
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Current Zoology
- ISSN:
- 1674-5507
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract How populations adapt, or not, to rapid evolution of sexual signals has important implications for population viability, but is difficult to assess due to the paucity of examples of sexual signals evolving in real time. In Hawaiian populations of the Pacific field cricket (
Teleogryllus oceanicus ), selection from a deadly parasitoid fly has driven the rapid loss of a male acoustic signal, calling song, that females use to locate and evaluate potential mates. In this newly quiet environment where many males are obligately silent, how do phonotactic females find mates? Previous work has shown that the acoustic rearing environment (presence or absence of male calling song) during late juvenile stages and early adulthood exposes adaptive flexibility in locomotor behaviors of males, as well as mating behaviors in both sexes that helps facilitate the spread of silent (flatwing) males. Here, we tested whether females also show acoustically induced plasticity in walking behaviors using laboratory‐reared populations ofT. oceanicus from Kauai (HI; >90% flatwings), Oahu (HI; ~50% flatwings), and Mangaia (Cook Islands; no flatwings or parasitoid fly). Though we predicted that females reared without song exposure would increase walking behaviors to facilitate mate localization when song is rare, we discovered that, unlike males, femaleT. oceanicus showed relatively little plasticity in exploratory behaviors in response to an acoustic rearing environment. Across all three populations, exposure to male calling song during development did not affect latency to begin walking, distance walked, or general activity of female crickets. However, females reared in the absence of song walked slower and showed a marginally non‐significant tendency to walk for longer durations of time in a novel environment than those reared in the presence of song. Overall, plasticity in female walking behaviors appears unlikely to have facilitated sexual signal loss in this species. -
Abstract Male mating strategies respond to female availability such that variation in resources that affect spatial distribution can also alter cost–benefit tradeoffs within a population. In arid‐adapted species, rainfall alters reproduction, behavior, morphology, and population density such that populations differing in resource availability may also differ in successful reproductive strategies. Here, we compare two populations of Cape ground squirrels (
Xerus inauris ), a sub‐Saharan species with year‐round breeding and intense mating competition. Unlike most mammals where males resort to aggressive interactions over females, maleX. inauris are tolerant of one another, relying instead on other nonaggressive pre‐ and postcopulatory strategies to determine reproductive success. Our findings suggest that differences in resource availability affect female distribution, which ultimately leads to intraspecific variation in male reproductive tactics and sexual morphology. Sperm competition, assessed by reproductive morphometrics, was more pronounced in our high resource site where females were distributed evenly across the landscape, whereas dominance seemed to be an important determinant of success in our low resource site where females were more aggregated. Both sites had similar mating intensities, and most males did not sire any offspring. However, our low resource site had a higher variance in fertilization success with fewer males siring multiple offspring compared with our high resource site where more individuals were successful. Our results lend support to resource models where variations in female spatial distribution attributed to environmental resources ultimately impact male reproductive behaviors and morphology. -
Abstract Environmental microbes have the potential to be involved in nearly all behavioural processes. For example, mating systems where males use intromittent organs to transfer sperm to females represent a means by which environmental microbes collected by males can breach entry into females' body cavities during mating. However, the degree to which the acquisition of environmental microbes onto important sex structures alters courtship behaviours remains unknown. Here, we collected bacteria from the copulatory organs of
Agelenopsis pennsylvanica funnel‐weaving spiders in situ to test whether exposure to bacteria on copulatory organs can alter hosts' courtship behaviour, reproductive success and survival. We used a standardized assay to repeatedly measure each spider's aggressiveness, a behavioural component of both male courtship and female sexual receptivity. Then, we experimentally altered the bacteria present on male and female spiders' copulatory organs with an application of either (a) a mixture of bacteria collected from conspecifics to increase bacterial presence, (b) an antibiotic to reduce bacterial presence or (c) a procedural control. Each spider was paired with a size‐matched spider of the opposite sex whose copulatory organs were unaltered, and we measured the latency until the onset and the duration of courtship. Spiders were then isolated, and we measured each individual's time until death and female fecundity over the next 40 days. We found that female exposure to bacteria had multiple effects on mating dynamics. Males took over four times longer to begin courting females that had been exposed to bacteria compared to unexposed and antibiotic‐treated females. Only when courting these bacteria‐exposed females, males began courtship sooner when females were more aggressive. Lastly, females whose mate had been exposed to bacteria experienced reduced survival. These data suggest that bacteria present on animals' copulatory organs can alter courtship behaviours, female survivorship, and may potentially play a role in mating dynamics. -
Abstract The interplay between a receiver's sensory system and a sender's courtship signals is fundamental to the operation of sexual selection. Male courtship signals that match a female receiver's preexisting perceptual biases can be favored yet the message they communicate is not always clear. Do they simply beacon the male's location or also indicate his quality? We explored this question in a species of fiddler crab
Uca terpsichores that courts under elevated predation risk and that mates and breeds underground in the safety of males' burrows. Sexually receptive females leave their own burrows and are thereby exposed to avian predators as they sequentially approach several courting males before they choose one. Males court by waving their single greatly enlarge claw and sometimes by building a sand hood next to their burrow entrance. Hoods are attractive because they elicit a risk‐reducing orientation behavior in females, and it has been suggested that claw waving may also serve primarily to orient the female to the male. If the wave communicates male quality, then females should discriminate mates on the basis of variation in elements of the wave, as has been shown for other fiddler crabs. Alternatively, variation in elements of the claw waving display may have little effect on the display's utility as a beacon of the location of the male and his burrow. We filmed courting males and females under natural conditions as females responded to claw waving and chose mates. Analysis of the fine‐scale courtship elements between the males that females rejected and those they chose revealed no differences. When predation risk during courtship is high, males' courtship displays may serve primarily to guide females to safe mating and breeding sites and not as indicators of male quality apart from their roles as beacons.