skip to main content


Title: Human-induced warming accelerates local evapotranspiration and precipitation recycling over the Tibetan Plateau
Abstract

The Tibetan Plateau faces changing precipitation and environmental conditions affecting alpine ecosystems and downstream freshwater sustainability. While aerosol influence has been highlighted, how human-induced greenhouse warming impacts the plateau’s moisture recycling remains unclear. Here we show that the Tibetan Plateau’s recent precipitation changes result from enhanced precipitation recycling and moisture convergence that offset the decline in monsoon- and westerly-associated moisture transport based on 40-year Lagrangian simulations and water budget analyses. Local evapotranspiration is observed to increase faster in percentage than precipitation, a trend expected to continue in future warming scenarios according to climate projections. Greenhouse gas emission causes widespread wetting while weakening the southerly monsoons across the Himalayas, heightening the sensitivity of precipitation to evapotranspiration and thereby local land surface changes. This trend exacerbates vulnerability in the water cycle of high mountain Asia, calling for proactive management to address potential risks and ensure future water and food security in Asia.

 
more » « less
PAR ID:
10524996
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
5
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    There is strong evidence that the expansion and intensification of irrigation over the twentieth century has affected climate in many regions. However, it remains uncertain if these irrigation effects, including buffered warming trends, will weaken or persist under future climate change conditions. Using a 20‐member climate model ensemble simulation, we demonstrate that irrigation will continue to attenuate greenhouse gas‐forced warming and soil moisture drying in many regions over the 21st century, including Mexico, the Mediterranean, Southwest Asia, and China. Notably, this occurs without any further expansion or intensification of irrigation beyond current levels, even while greenhouse gas forcing steadily increases. However, the magnitude and significance of these moderating irrigation effects vary across regions and are highly sensitive to the background climate state and the degree to which evapotranspiration is supply (moisture) versus demand (energy) limited. Further, limitations on water and land availability may restrict our ability to maintain modern irrigation rates into the future. Nevertheless, it is likely that irrigation, alongside other components of intensive land management, will continue to strongly modulate regional climate impacts in the future. Irrigation should therefore be considered in conjunction with other key regional anthropogenic forcings (e.g., land cover change and aerosols) when investigating the local manifestation of global climate drivers (e.g., greenhouse gases) in model projections.

     
    more » « less
  2. Abstract

    The deuterium excess (d‐excess) of precipitation varies seasonally at sites across the globe, an observation that has often been linked to seasonal changes in oceanic evaporation conditions, continental moisture recycling, and subcloud raindrop re‐evaporation. However, there have been very few studies to quantify and evaluate the relative importance of these processes. Here, we revisit the mechanisms of precipitation d‐excess seasonality in low‐latitudes and mid‐latitudes through a new analysis of precipitation isotope databases along with climate reanalysis products and moisture tracking models. In low‐latitudes, the raindrop re‐evaporation effect, indicated by local relative humidity, exerts a strong and prevalent control on observed d‐excess seasonality and overprints the effect of oceanic evaporation conditions. In mid‐latitudes, the effect of oceanic evaporation conditions becomes stronger and seems dominant in the observed d‐excess seasonality. However, the ultimate d‐excess signals are produced after complex modulations by several reinforcing or competing processes, including prior distillations, moisture recycling, supersaturation in snow formation, and raindrop re‐evaporation. Among these processes, substantial increases in the proportion of recycled moisture during the warm and dry season do not produce higher precipitation d‐excess in mid‐latitude continental interiors. We develop a simple seasonal water storage model to show that contributions of previously evaporated residual water storage and higher transpiration fractions may lead to relatively low d‐excess in evapotranspiration fluxes during periods of enhanced continental moisture recycling. This study underscores the ubiquitous nonconservative behavior in d‐excess throughout the water cycle, as opposed to using d‐excess as a simple tracer for remote conditions at oceanic moisture sources.

     
    more » « less
  3. Abstract

    Water is redistributed from evaporation sources to precipitation sinks through atmospheric moisture transport. In the Brazilian Amazon, the spatial and temporal variability of dry season moisture sources for key agricultural regions has not been investigated. This study investigates moisture sources for dry season rainfall in the state of Rondônia in Brazil, especially during drought years. Using a precipitationshed framework, we quantified the variability of moisture contributions to rainfall in the state of Rondônia (Brazilian Amazon) and the influence of synoptic circulation patterns. Ocean evaporation accounts for 58% of mean dry season precipitation while continental recycling contributed 42%. During drought years, although forests maintain or increase evapotranspiration, the moisture contribution of both ocean and forests to dry season rainfall decreases due to the synoptic circulation changes, reducing the moisture transport into Rondônia.

     
    more » « less
  4. Abstract

    Understanding vulnerabilities of continental precipitation to changing climatic conditions is of critical importance to society at large. Terrestrial precipitation is fed by moisture originating as evaporation from oceans and from recycling of water evaporated from continental sources. In this study, continental precipitation and evaporation recycling processes in the Earth system model GFDL-ESM2G are shown to be consistent with estimates from two different reanalysis products. The GFDL-ESM2G simulations of historical and future climate also show that values of continental moisture recycling ratios were systematically higher in the past and will be lower in the future. Global mean recycling ratios decrease 2%–3% with each degree of temperature increase, indicating the increased importance of oceanic evaporation for continental precipitation. Theoretical arguments for recycling changes stem from increasing atmospheric temperatures and evaporative demand that drive increases in evaporation over oceans that are more rapid than those over land as a result of terrestrial soil moisture limitations. Simulated recycling changes are demonstrated to be consistent with these theoretical arguments. A simple prototype describing this theory effectively captures the zonal mean behavior of GFDL-ESM2G. Implications of such behavior are particularly serious in rain-fed agricultural regions where crop yields will become increasingly soil moisture limited.

     
    more » « less
  5. Abstract During the summer, the Midwest United States, which covers the main US corn belt, has a net loss of surface water as evapotranspiration exceeds precipitation. The net moisture gain into the atmosphere is transported out of the region to northern high latitudes through transient eddy moisture fluxes. How this process may change in the future is not entirely clear despite the fact that the corn belt region is responsible for a large portion of the global supply of corn and soybeans. We find that increased CO2 and the associated warming increases evapotranspiration. while precipitation reduces in the region leading to further reduction in precipitation minus evaporation (P-E) in the future. At the same time, the poleward transient moisture flux increases leading to enhanced atmospheric moistures export from the corn belt region. However, storm track intensity is generally weakened in the summer due to reduced north-south temperature gradient associated with amplified warming in the midlatitudes. The intensified transient eddy moisture transport as storm track weakens can be reconciled by the stronger mean moisture gradient in the future. This is found to be caused by the climatological low-level jet transporting more moisture into the Great Plains region due to the thermodynamic mechanism under warmer conditions. Our results, for the first time, show that in the future, the US Midwest corn belt will experience more hydrological stress due to intensified transient eddy moisture export leading to drier soils in the region. 
    more » « less