We demonstrate high fidelity repetitive projective measurements of nuclear spin qubits in an array of neutral ytterbium-171 (171Yb) atoms. We show that the qubit state can be measured with a fidelity of 0.995(4) under a condition that leaves it in the state corresponding to the measurement outcome with a probability of 0.993(6) for a single tweezer and 0.981(4) averaged over the array. This is accomplished by near-perfect cyclicity of one of the nuclear spin qubit states with an optically excited state under a magnetic field of B=58 G, resulting in a bright/dark contrast of ≈105 during fluorescence readout. The performance improves further as ∼1/B2. The state-averaged readout survival of 0.98(1) is limited by off-resonant scattering to dark states and can be addressed via post-selection by measuring the atom number at the end of the circuit, or during the circuit by performing a measurement of both qubit states. We combine projective measurements with high-fidelity rotations of the nuclear spin qubit via an AC magnetic field to explore several paradigmatic scenarios, including the non-commutivity of measurements in orthogonal bases, and the quantum Zeno mechanism in which measurements "freeze" coherent evolution. Finally, we employ real-time feedforward to repetitively deterministically prepare the qubit in the +z or −z direction after initializing it in an orthogonal basis and performing a projective measurement in the z-basis. These capabilities constitute an important step towards adaptive quantum circuits with atom arrays, such as in measurement-based quantum computation, fast many-body state preparation, holographic dynamics simulations, and quantum error correction.
more »
« less
Enhanced measurement of neutral atom qubits with machine learning
The ability to make high-fidelity qubit measurements with minimal collateral disruption to the system is not only relevant to initialization and final read-out -- it is also essential to achieving quantum error correction on a universal quantum computation. Qubit state measurements in a neutral atom array are achieved by probing the array with light detuned from a cycling transition and capturing resulting fluorescence with a high quantum efficiency imaging device, producing a greyscale image of the neutral atom array. Conventionally, to achieve a fidelity above 99%, the typical probing period is several ms. This is a significant delay, given that the longest gate operation only takes several micros. In this poster, we demonstrate qubit state measurements assisted by a supervised convolutional neural network (CNN) in a neutral atom quantum processor. We present two CNN architectures for analyzing neutral atom qubit readout data: a compact 5-layer single-qubit CNN architecture and a 6-layer multi-qubit CNN architecture. We benchmark both architectures against a conventional Gaussian threshold analysis method. We demonstrate up to 56% reduction of measurement infidelity using the CNN compared to a conventional analysis method. This work presents a proof of concept for a CNN network to be implemented as a real-time readout processing method on a neutral atom quantum computer, enabling faster readout time and improved fidelity.
more »
« less
- Award ID(s):
- 2210437
- PAR ID:
- 10525139
- Publisher / Repository:
- Bulletin of American Physical Society, 55th DAMOP 2024
- Date Published:
- Format(s):
- Medium: X
- Location:
- Dallas, Texas
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neutral-atom quantum processors are a promising platform for large-scale quantum computing. Integrating them with optical cavities enables fast nondestructive qubit readout and access to fast remote entanglement generation for quantum networking. In this work, we introduce a platform for coupling single atoms in optical tweezers to a Fabry-Perot fiber cavity. Leveraging the strong atom-cavity coupling, we demonstrated fast qubit-state readout with fidelity and two methods for cavity-mediated entanglement generation with integrated error detection. First, we used cavity-carving to generate a Bell state with 91(4)% fidelity and a 32(1)% success rate (the number in parentheses is the standard deviation). Second, we performed a cavity-mediated gate with a deterministic entanglement fidelity of 52.5(18)%, increased to 76(2)% with error detection. Our approach provides a route toward modular quantum computing and networking.more » « less
-
The neutral atom array has gained prominence in quantum computing for its scalability and operation fidelity. Previous works focus on fixed atom arrays (FAAs) that require extensive SWAP operations for long-range interactions. This work explores a novel architecture reconfigurable atom arrays (RAAs), also known as field programmable qubit arrays (FPQAs), which allows for coherent atom movements during circuit execution under some constraints. Such atom movements, which are unique to this architecture, could reduce the cost of longrange interactions significantly if the atom movements could be scheduled strategically. In this work, we introduce Atomique, a compilation framework designed for qubit mapping, atom movement, and gate scheduling for RAA. Atomique contains a qubit-array mapper to decide the coarse-grained mapping of the qubits to arrays, leveraging MAX k-Cut on a constructed gate frequency graph to minimize SWAP overhead. Subsequently, a qubit-atom mapper determines the fine-grained mapping of qubits to specific atoms in the array and considers load balance to prevent hardware constraint violations. We further propose a router that identifies parallel gates, schedules them simultaneously, and reduces depth. We evaluate Atomique across 20+ diverse benchmarks, including generic circuits (arbitrary, QASMBench, SupermarQ), quantum simulation, and QAOA circuits. Atomique consistently outperforms IBM Superconducting, FAA with long-range gates, and FAA with rectangular and triangular topologies, achieving significant reductions in depth and the number of two-qubit gates.more » « less
-
Trapped neutral atoms have become a prominent platform for quantum science, where entanglement fidelity records have been set using highly excited Rydberg states. However, controlled two-qubit entanglement generation has so far been limited to alkali species, leaving the exploitation of more complex electronic structures as an open frontier that could lead to improved fidelities and fundamentally different applications such as quantum-enhanced optical clocks. Here, we demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms. We find fidelities for Rydberg state detection, single-atom Rabi operations and two-atom entanglement that surpass previously published values. Our results pave the way for novel applications, including programmable quantum metrology and hybrid atom–ion systems, and set the stage for alkaline-earth based quantum computing architectures.more » « less
-
Abstract The ability to perform entangling quantum operations with low error rates in a scalable fashion is a central element of useful quantum information processing1. Neutral-atom arrays have recently emerged as a promising quantum computing platform, featuring coherent control over hundreds of qubits2,3and any-to-any gate connectivity in a flexible, dynamically reconfigurable architecture4. The main outstanding challenge has been to reduce errors in entangling operations mediated through Rydberg interactions5. Here we report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel, surpassing the surface-code threshold for error correction6,7. Our method uses fast, single-pulse gates based on optimal control8, atomic dark states to reduce scattering9and improvements to Rydberg excitation and atom cooling. We benchmark fidelity using several methods based on repeated gate applications10,11, characterize the physical error sources and outline future improvements. Finally, we generalize our method to design entangling gates involving a higher number of qubits, which we demonstrate by realizing low-error three-qubit gates12,13. By enabling high-fidelity operation in a scalable, highly connected system, these advances lay the groundwork for large-scale implementation of quantum algorithms14, error-corrected circuits7and digital simulations15.more » « less
An official website of the United States government

