skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HumanLight: Incentivizing ridesharing via human-centric deep reinforcement learning in traffic signal control
Single occupancy vehicles are the most attractive transportation alternative for many commuters, leading to increased traffic congestion and air pollution. Advancements in information technologies create opportunities for smart solutions that incentivize ridesharing and mode shift to higher occupancy vehicles (HOVs) to achieve the car lighter vision of cities. In this study, we present HumanLight, a novel decentralized adaptive traffic signal control algorithm designed to optimize people throughput at intersections. Our proposed controller is founded on reinforcement learning with the reward function embedding the transportation-inspired concept of pressure at the person-level. By rewarding HOV commuters with travel time savings for their efforts to merge into a single ride, HumanLight achieves equitable allocation of green times. Apart from adopting FRAP, a state-of-the-art (SOTA) base model, HumanLight introduces the concept of active vehicles, loosely defined as vehicles in proximity to the intersection within the action interval window. The proposed algorithm showcases significant headroom and scalability in different network configurations considering multimodal vehicle splits at various scenarios of HOV adoption. Improvements in person delays and queues range from 15% to over 55% compared to vehicle-level SOTA controllers. We quantify the impact of incorporating active vehicles in the formulation of our RL model for different network structures. HumanLight also enables regulation of the aggressiveness of the HOV prioritization. The impact of parameter setting on the generated phase profile is investigated as a key component of acyclic signal controllers affecting pedestrian waiting times. HumanLight’s scalable, decentralized design can reshape the resolution of traffic management to be more human-centric and empower policies that incentivize ridesharing and public transit systems.  more » « less
Award ID(s):
2421839
PAR ID:
10525344
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Transportation Research Part C
Date Published:
Journal Name:
Transportation Research Part C: Emerging Technologies
Volume:
162
Issue:
C
ISSN:
0968-090X
Page Range / eLocation ID:
104593
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traffic congestion has become a serious issue around the globe, partly owing to single-occupancy commuter trips. Ridesharing can present a suitable alternative for serving commuter trips. However, there are several important obstacles that impede ridesharing systems from becoming a viable mode of transportation, including the lack of a guarantee for a ride back home as well as the difficulty of obtaining a critical mass of participants. This paper addresses these obstacles by introducing a traveler incentive program (TIP) to promote community-based ridesharing with a ride back home guarantee among commuters. The TIP program allocates incentives to (1) directly subsidize a select set of ridesharing rides and (2) encourage a small, carefully selected set of travelers to change their travel behavior (i.e., departure or arrival times). We formulate the underlying ride-matching problem as a budget-constrained min-cost flow problem and present a Lagrangian relaxation-based algorithm with a worst-case optimality bound to solve large-scale instances of this problem in polynomial time. We further propose a polynomial-time, budget-balanced version of the problem. Numerical experiments suggest that allocating subsidies to change travel behavior is significantly more beneficial than directly subsidizing rides. Furthermore, using a flat tax rate as low as 1% can double the system’s social welfare in the budget-balanced variant of the incentive program. 
    more » « less
  2. This paper proposes a novel decentralized signal control algorithm that seeks to improve traffic delay equity, measured as the variation of delay experienced by individual vehicles. The proposed method extends the recently developed delay-based max pressure (MP) algorithm by using the sum of cumulative delay experienced by all vehicles that joined a given link as the metric for weight calculation. Doing so ensures the movements with lower traffic loads have a higher chance of being served as their delay increases. Three existing MP models are used as baseline models with which to compare the proposed algorithm in microscopic simulations of both a single intersection and a grid network. The results indicate that the proposed algorithm can improve the delay equity for various traffic conditions, especially for highly unbalanced traffic flows. Moreover, this improvement in delay equity does not come with a significant increase to average delay experienced by all vehicles. In fact, the average delay from the proposed algorithm is close to—and sometimes even lower than—the baseline models. Therefore, the proposed algorithm can maintain both objectives at the same time. In addition, the performance of the proposed control strategy was tested in a connected vehicle environment. The results show that the proposed algorithm outperforms the other baseline models in both reducing traffic delay and increasing delay equity when the penetration rate is less or equal to 60%, which would not be exceeded in reality in the near future. 
    more » « less
  3. Recent technological advancements in the automotive and transportation industry established a firm foundation for development and implementation of various connected and automated vehicle solutions around the globe. Wireless communication technologies such as the dedicated short-range communication protocol are enabling information exchange between vehicles and infrastructure. This research paper introduces an intersection management strategy for a corridor with automated vehicles utilizing vehicular trajectory-driven optimization method. Trajectory-Driven Optimization for Automated Driving provides an optimal trajectory for automated vehicles based on current vehicle position, prevailing traffic, and signal status on the corridor. All inputs are used by the control algorithm to provide optimal trajectories for automated vehicles, resulting in the reduction of vehicle delay along the signalized corridor with fixed-time signal control. The concept evaluation through microsimulation reveals that, even with low market penetration (i.e., less than 10%), the technology reduces overall travel time of the corridor by 2%. Further increase in market penetration produces travel time and fuel consumption reductions of up to 19.5% and 22.5%, respectively. 
    more » « less
  4. The Intelligent Transportation System has become one of the most globally researched topics, with Connected and Autonomous Vehicles(CAV) at its core. The CAV applications can be improved by the study of vehicle platooning immune to realtime traffic and vehicular network losses. In this work, we explore the need to integrate the Network model and Platooning system model for highway environments. The proposed platoon model is designed to be adaptive in length, providing the node vehicles to merge and exit. This overcomes the assumption that all the platoon nodes should have a common source and destination. The challenges of the existing platoon model, such as relay selection, acceleration threshold, are addressed for highly modular platoon design. The presented algorithm for merge and exit events optimizes the trade-off between network parameters such as communication range and vehicle dynamic parameters such as velocity and acceleration threshold. It considers the network bounds like SINR and link stability and vehicle trajectory parameters like the duration of the vehicle in the platoon. This optimizes the traffic throughput while maintaining stability using the PID controller. The work tries to increase the vehicle inclusion time in the platoon while preserving the overall traffic throughput. 
    more » « less
  5. This paper undertakes a detailed empirical study of traffic dynamics on a freeway. The results show the traffic dynamics that systematically determine the shape of the fundamental diagram, FD, can also violate the stationarity assumptions of both shockwave analysis and Lighthill, Whitham and Richard's models, thereby inhibiting the applicability of these classical macroscopic traffic flow theories. The outcome is challenging because there is no way to identify the problem using only the macroscopic detector data. The research examines conditions local to vehicle detector stations to establish the FD while the single vehicle passage method is used to analyze the composition of vehicles underlying the aggregate samples. Then, traffic states are correlated between successive stations to measure the actual signal velocities and show they are inconsistent with the classical theories. This analysis also revealed that conditions in one lane can induce signals in another lane. Rather than exhibiting a single signal passing a given point in time and space, the induced and intrinsic signals are superimposed on one another in the given lane. We suspect the subtle dynamics revealed in this research have gone unnoticed because they are far below the resolution of conventional traffic monitoring. The findings could have implications to other traffic flow models that rely on the FD, so care should be taken to assess if a given model is potentially sensitive to the non-stationary dynamics presented herein. The results have a direct impact on practice. Traffic flow theory is a critical input to many aspects of surface transportation, e.g., traffic management, traffic control, network design, vehicle routing, traveler information, and transportation planning all depend on models or simulation software that are based upon traffic flow theory. If the underlying traffic flow theory is flawed it puts the higher level applications at risk. So, the findings in this paper should lead to caution in accepting the predictions from traffic flow models and simulation software when the traffic exhibits a concave FD. 
    more » « less