skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microbial Catalysis for CO 2 Sequestration: A Geobiological Approach
One of the greatest threats facing the planet is the continued increase in excess greenhouse gasses, with CO2 being the primary driver due to its rapid increase in only a century. Excess CO2 is exacerbating known climate tipping points that will have cascading local and global effects including loss of biodiversity, global warming, and climate migration. However, global reduction of CO2 emissions is not enough. Carbon dioxide removal (CDR) will also be needed to avoid the catastrophic effects of global warming. Although the drawdown and storage of CO2 occur naturally via the coupling of the silicate and carbonate cycles, they operate over geological timescales (thousands of years). Here, we suggest that microbes can be used to accelerate this process, perhaps by orders of magnitude, while simultaneously producing potentially valuable by-products. This could provide both a sustainable pathway for global drawdown of CO2 and an environmentally benign biosynthesis of materials. We discuss several different approaches, all of which involve enhancing the rate of silicate weathering. We use the silicate mineral olivine as a case study because of its favorable weathering properties, global abundance, and growing interest in CDR applications. Extensive research is needed to determine both the upper limit of the rate of silicate dissolution and its potential to economically scale to draw down significant amounts (Mt/Gt) of CO2. Other industrial processes have successfully cultivated microbial consortia to provide valuable services at scale (e.g., wastewater treatment, anaerobic digestion, fermentation), and we argue that similar economies of scale could be achieved from this research.  more » « less
Award ID(s):
2049299
PAR ID:
10525388
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Cold Spring Harbor
Date Published:
Journal Name:
Cold Spring Harbor Perspectives in Biology
Volume:
16
Issue:
5
ISSN:
1943-0264
Page Range / eLocation ID:
a041673
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Meeting internationally agreed-upon climate targets requirescarbon dioxide removal (CDR) strategies coupled with an urgent phase-down offossil fuel emissions. However, the efficacy and wider impacts of CDR arepoorly understood. Enhanced rock weathering (ERW) is a land-based CDRstrategy requiring large-scale field trials. Here we show that a low 3.44 t ha−1 wollastonite treatment in an 11.8 ha acid-rain-impacted forested watershed in New Hampshire, USA, led to cumulative carbon capture by carbonic acid weathering of 0.025–0.13 t CO2 ha−1 over 15 years. Despite a 0.8–2.4 t CO2 ha−1 logistical carbon penalty from mining,grinding, transportation, and spreading, by 2015 weathering together withincreased forest productivity led to net CDR of 8.5–11.5 t CO2 ha−1. Our results demonstrate that ERW may be an effective, scalableCDR strategy for acid-impacted forests but at large scales requiressustainable sources of silicate rock dust. 
    more » « less
  2. Abstract. The warmer early Pliocene climate featured changes to global sea surface temperature (SST) patterns, namely a reduction in the Equator–pole gradient and the east–west SST gradient in the tropical Pacific, the so-called “permanent El Niño”. Here we investigate the consequences of the SST changes to silicate weathering and thus to atmospheric CO2 on geological timescales. Different SST patterns than today imply regional modifications of the hydrological cycle that directly affect continental silicate weathering in particular over tropical “hotspots” of weathering, such as the Maritime Continent, thus leading to a “weatherability pattern effect”. We explore the impact of Pliocene-like SST changes on weathering using climate model and silicate weathering model simulations, and we deduce CO2 and temperature at carbon cycle equilibrium between solid Earth degassing and silicate weathering. In general, we find large regional increases and decreases in weathering fluxes, and the net effect depends on the extent to which they cancel. Permanent El Niño conditions lead to a small amplification of warming relative to the present day by 0.4 ∘C, suggesting that the demise of the permanent El Niño could have had a small amplifying effect on cooling from the early Pliocene into the Pleistocene. For the reducedEquator–pole gradient, the weathering increases and decreases largely cancel, leading to no detectable difference in global temperature at carbon cycle equilibrium. A robust SST reconstruction of the Pliocene is needed for a quantitative evaluation of the weatherability pattern effect. 
    more » « less
  3. Abstract. Endmember mixing analysis (EMMA) is often used by hydrogeochemiststo interpret the sources of stream solutes, but variations in streamconcentrations and discharges remain difficult to explain. We discoveredthat machine learning can be used to highlight patterns in stream chemistrythat reveal information about sources of solutes and subsurface groundwaterflowpaths. The investigation has implications, in turn, for the balance ofCO2 in the atmosphere. For example, CO2-driven weathering ofsilicate minerals removes carbon from the atmosphere over ∼106-year timescales. Weathering of another common mineral, pyrite, releases sulfuricacid that in turn causes dissolution of carbonates. In that process,however, CO2 is released instead of sequestered from the atmosphere. Thus, understanding long-term global CO2 sequestration by weatheringrequires quantification of CO2- versus H2SO4-drivenreactions. Most researchers estimate such weathering fluxes from streamchemistry, but interpreting the reactant minerals and acids dissolved in streams has been fraught with difficulty. We apply a machine-learningtechnique to EMMA in three watersheds to determine the extent of mineraldissolution by each acid, without pre-defining the endmembers. The resultsshow that the watersheds continuously or intermittently sequester CO2, but the extent of CO2 drawdown is diminished in areas heavily affectedby acid rain. Prior to applying the new algorithm, CO2 drawdown wasoverestimated. The new technique, which elucidates the importance ofdifferent subsurface flowpaths and long-timescale changes in the watersheds,should have utility as a new EMMA for investigating water resourcesworldwide. 
    more » « less
  4. Most current strategies for carbon management require CO2 removal (CDR) from the atmosphere on the multi-hundred gigatonne (Gt) scale by 2100. Mg-rich silicate minerals can remove >105 Gt CO2 and sequester it as stable and innocuous carbonate minerals or dissolved bicarbonate ions. However, the reaction rates of these minerals under ambient conditions are far too slow for practical use. Here we show that CaCO3 and CaSO4 react quantitatively with diverse Mg-rich silicates (for example, olivine, serpentine and augite) under thermochemical conditions to form Ca2SiO4 and MgO. On exposure to ambient air under wet conditions, Ca2SiO4 is converted to CaCO3 and silicic acid, and MgO is partially converted into a Mg carbonate within weeks, whereas the input Mg silicate shows no reactivity over 6 months. Alternatively, Ca2SiO4 and MgO can be completely carbonated to CaCO3 and Mg(HCO3)2 under 1 atm CO2 at ambient temperature within hours. Using CaCO3 as the Ca source, this chemistry enables a CDR process in which the output Ca2SiO4/MgO material is used to remove CO2 from air or soil and the CO2 process emissions are sequestered. Analysis of the energy requirements indicates that this process could require less than 1 MWh per tonne CO2 removed, approximately half the energy of CO2 capture with leading direct air capture technologies. The chemistry described here could unlock Mg-rich silicates as a vast resource for safe and permanent CDR. 
    more » « less
  5. Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO2) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods—measurement, monitoring, reporting, and verification—that are essential to demonstrate the safe removal and long-term storage of CO2. Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required. 
    more » « less