This content will become publicly available on April 17, 2025
More Like this
-
As memory requirements grow, and advances in memory technology slow, the availability of sufficient main memory is increasingly the bottleneck in large compute clusters. One solution to this is memory disaggregation, where jobs can remotely access memory on other servers, or far memory. This paper first presents faster swapping mechanisms and a far memory-aware cluster scheduler that make it possible to support far memory at rack scale. Then, it examines the conditions under which this use of far memory can increase job throughput. We find that while far memory is not a panacea, for memory-intensive workloads it can provide performance improvements on the order of 10% or more even without changing the total amount of memory available.more » « less
-
ABSTRACT We identify 182 flares on 158 stars within 100 pc of the Sun in both the near-ultraviolet (NUV; $1750\!-\!2750$ Å) and far-ultraviolet (FUV; $1350\!-\!1750$ Å) using high-cadence light curves from the Galaxy Evolution Explorer. Ultraviolet (UV) emission from stellar flares plays a crucial role in determining the habitability of exoplanetary systems. However, whether such UV emission promotes or threatens such life depends strongly on the energetics of these flares. Most studies assessing the effect of flares on planetary habitability assume a 9000 K blackbody spectral energy distribution that produces more NUV flux than FUV flux ($\mathcal {R} \equiv F_{\rm FUV} / F_{\rm NUV} \approx \frac{1}{6}$). Instead, we observe the opposite with the excess FUV reaching $\mathcal {R} \approx \frac{1}{2}\!-\!2$, roughly $3\!-\!12$ times the expectation of a 9000 K blackbody. The ratio of FUV to NUV time-integrated flare energies is 3.0 times higher on average than would be predicted by a constant 9000 K blackbody during the flare. Finally, we find that the FUV/NUV ratio at peak tentatively correlates (${\sim} 2 \sigma$ significance) both with total UV flare energy and with the G − RP colour of the host star. On average, we observe higher FUV/NUV ratios at peak in $E_{\text{UV}}\gt 10^{32}$ erg flares and in flares on fully convective stars.