skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Retroreflective optical ISAC using OFDM: channel modeling and performance analysis
In this Letter, we propose and investigate a retroreflective optical integrated sensing and communication (RO-ISAC) system using orthogonal frequency division multiplexing (OFDM) and corner cube reflector (CCR). To accurately model the reflected sensing channel of the RO-ISAC system, both a point source model and an area source model are proposed according to the two main types of light sources that are widely used. Detailed theoretical and experimental results are presented to verify the accuracy of the proposed channel models and evaluate the communication and sensing performance of the considered RO-ISAC system.  more » « less
Award ID(s):
2431272
PAR ID:
10525647
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
49
Issue:
15
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 4214
Size(s):
Article No. 4214
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrated sensing and communication (ISAC) is considered an emerging technology for 6th-generation (6G) wireless and mobile networks. It is expected to enable a wide variety of vertical applications, ranging from unmanned aerial vehicles (UAVs) detection for critical infrastructure protection to physiological sensing for mobile healthcare. Despite its significant socioeconomic benefits, ISAC technology also raises unique challenges in system security and user privacy. Being aware of the security and privacy challenges, understanding the trade-off between security and communication performance, and exploring potential countermeasures in practical systems are critical to a wide adoption of this technology in various application scenarios. This talk will discuss various security and privacy threats in emerging ISAC systems with a focus on communication-centric ISAC systems, that is, using the cellular or WiFi infrastructure for sensing. We will then examine potential mechanisms to secure ISAC systems and protect user privacy at the physical and data layers under different sensing modes. At the wireless physical (PHY) layer, an ISAC system is subject to both passive and active attacks, such as unauthorized passive sensing, unauthorized active sensing, signal spoofing, and jamming. Potential countermeasures include wireless channel/radio frequency (RF) environment obfuscation, waveform randomization, anti-jamming communication, and spectrum/RF monitoring. At the data layer, user privacy could be compromised during data collection, sharing, storage, and usage. For sensing systems powered by artificial intelligence (AI), user privacy could also be compromised during the model training and inference stages. An attacker could falsify the sensing data to achieve a malicious goal. Potential countermeasures include the application of privacy enhancing technologies (PETs), such as data anonymization, differential privacy, homomorphic encryption, trusted execution, and data synthesis. 
    more » « less
  2. Integrated sensing and communication (ISAC) systems traditionally presuppose that sensing and communication (S&C) channels remain approximately constant during their coherence time. However, a “DISCO” reconfigurable intelligent surface (DRIS), i.e., an illegitimate RIS with random, time-varying reflection properties that acts like a “disco ball,” introduces a paradigm shift that enables active channel aging more rapidly during the channel coherence time. In this letter, we investigate the impact of DISCO jamming attacks launched by a DRIS-based fully-passive jammer (FPJ) on an ISAC system. Specifically, an ISAC problem formulation and a corresponding waveform optimization are presented in which the ISAC waveform design considers the trade-off between the S&C performance and is formulated as a Pareto optimization problem. Moreover, a theoretical analysis is conducted to quantify the impact of DISCO jamming attacks. Numerical results are presented to evaluate the S&C performance under DISCO jamming attacks and to validate the derived theoretical analysis. 
    more » « less
  3. The performance of cell-free massive multiple-input multiple-output (MIMO)-aided integrated sensing and communication (ISAC) is investigated. Each transmit access point (AP) sends a superimposed ISAC waveform from which the users are able to decode data, while the reflected echos off a target are used at the receive APs to perform sensing functionalities. Each transmit AP adopts a local conjugate precoder, which is designed based on the locally acquired channel state information (CSI) via user pilots. This approach reduces the implementation complexity as it does not necessitate CSI exchanges. An efficient transmit power optimization is also proposed to construct the superimposed ISAC waveform. The performance is evaluated by deriving the achievable user rates and quantifying the two-dimensional MUltiple SIgnal Classification (MUSIC) spectrum function at the receive APs. Our performance analysis captures practical impairments, including erroneously estimated CSI, spatially correlated Rician fading, and clutter interference. Our analytical and numerical results demonstrate the potential of our proposed cell-free massive MIMO aided ISAC systems. 
    more » « less
  4. We consider a secure integrated sensing and communication (ISAC) scenario, where a signal is transmitted through a state-dependent wiretap channel with one legitimate receiver with which the transmitter communicates and one honest-but-curious target that the transmitter wants to sense. The secure ISAC channel is modeled as two state-dependent fast-fading channels with correlated Rayleigh fading coefficients and independent additive Gaussian noise components. Delayed channel outputs are fed back to the transmitter to improve the communication performance and to estimate the channel state sequence. We establish and illustrate an achievable secrecy-distortion region for degraded secure ISAC channels under correlated Rayleigh fading, for which we show that the signal-to-interference-plus-noise is not a sufficient statistic. We also evaluate the inner bound for a large set of parameters to derive practical design insights. The presented results include parameter ranges for which the secrecy capacity of a classical wiretap channel setup is surpassed and for which the channel capacity is approached. Thus, we illustrate for correlated Rayleigh fading cases that our secure ISAC methods can (i) eliminate the need for the legitimate receiver to have a statistical advantage over the eavesdropper and (ii) provide communication security with minimal rate penalty. 
    more » « less
  5. The transition to millimeter-wave and sub-THz frequency bands necessitates that the base-stations (BSs) utilize extra-large antenna arrays (ELAA) to compensate for the associated huge path-losses. However, when higher frequencies and shorter transmission distances are utilized, the spherical wave curvature can no longer be neglected. Hence, the ELAAbased wireless systems tend to operate primarily in the near-field. Thus, the far-field channel models used for near-field users may detrimentally affect wireless system designs and performance gains. To this end, we investigate the impact of mismatches between far-field and near-field channel models/precoders on the performance of ELAA-based integrated sensing and communication (ISAC). To this end, the achievable user rates are derived for the near-field. Two detectors for sensing a target are designed based on known/unknown BS/target channels. The performance of these detectors are investigated by deriving the probability of detection and probability of false-alarm. A transmit power optimization procedure is also proposed to maximize the minimum achievable user rate, while ensuring a power threshold for sensing. Numerical results are used to study the fundamental trade-off between the probability of detection and achievable rates for near-field ELAA-based ISAC. We unveil that ELAAs can be leveraged to improve the ISAC performance trade-offs. 
    more » « less