We present a family of electron-based coupled-wire models of bosonic orbifold topological phases, referred to as twist liquids, in two spatial dimensions. All local fermion degrees of freedom are gapped and removed from the topological order by many-body interactions. Bosonic chiral spin liquids and anyonic superconductors are constructed on an array of interacting wires, each supports emergent massless Majorana fermions that are non-local (fractional) and constitute the S O ( N ) Kac-Moody Wess-Zumino-Witten algebra at level 1. We focus on the dihedral D k symmetry of S O ( 2 n ) 1 , and its promotion to a gauge symmetry by manipulating the locality of fermion pairs. Gauging the symmetry (sub)group generates the C / G twist liquids, where G = Z 2 for C = U ( 1 ) l , S U ( n ) 1 , and G = Z 2 , Z k , D k for C = S O ( 2 n ) 1 . We construct exactly solvable models for all of these topological states. We prove the presence of a bulk excitation energy gap and demonstrate the appearance of edge orbifold conformal field theories corresponding to the twist liquid topological orders. We analyze the statistical properties of the anyon excitations, including the non-Abelian metaplectic anyons and a new class of quasiparticles referred to as Ising-fluxons. We show an eight-fold periodic gauging pattern in S O ( 2 n ) 1 / G by identifying the non-chiral components of the twist liquids with discrete gauge theories. 
                        more » 
                        « less   
                    
                            
                            New anomaly free supergravities in six dimensions
                        
                    
    
            A<sc>bstract</sc> An extended search for anomaly free matter coupledN= (1,0) supergravity in six dimension is carried out by two different methods which we refer to as the graphical and rank methods. In the graphical method the anomaly free models are built from single gauge group models, called nodes, which can only have gravitational anomalies. We search for anomaly free theories with gauge groupsG1× … ×Gnwithn= 1,2,… (any number of factors) andG1× … ×Gn×U(1)Rwheren= 1,2,3 andU(1)Ris theR-symmetry group. While we primarily consider models with the tensor multiplet numbernT= 1, we also provide some results fornT≠ 1 with an unconstrained number of charged hypermultiplets. We find a large number of ungauged anomaly free theories. However, in the case ofR-symmetry gauged models withnT= 1, in addition to the three known anomaly free theories withG1×G2×U(1)Rtype symmetry, we find only six new remarkably anomaly free models with symmetry groups of the formG1×G2×G3×U(1)R. In the case ofnT= 1 and ungauged models, excluding low rank group factors and considering only low lying representations, we find all anomaly free theories. Remarkably, the number of group factors does not exceed four in this class. The proof of completeness in this case relies on a bound which we establish for a parameter characterizing the difference between the number of non-singlet hypermultiplets and the dimension of the gauge group. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2112859
- PAR ID:
- 10525744
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 5
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A<sc>bstract</sc> We investigate the dynamics responsible for generating the potential of theη′, the (would-be) Goldstone boson associated with the anomalous axial U(1) symmetry of QCD. The standard lore posits that pure QCD dynamics generates a confining potential with a branched structure as a function of theθangle, and that this same potential largely determines the properties of theη′once fermions are included. Here we test this picture by examining a supersymmetric extension of QCD with a small amount of supersymmetry breaking generated via anomaly mediation. For pure SU(N) QCD without flavors, we verify that there areNbranches generated by gaugino condensation. Once quarks are introduced, the flavor effects qualitatively change the strong dynamics of the pure theory. ForFflavors we find |N − F| branches, whose dynamical origin is gaugino condensation in the unbroken subgroup forF < N –1, and in the dual gauge group forF > N+ 1. For the special cases ofF=N –1,N,N+ 1 we find no branches and the entire potential is consistent with being a one-instanton effect. The number of branches is a simple consequence of the selection rules of an anomalous U(1)Rsymmetry. We find that theη′mass does not vanish in the largeNlimit for fixedF/N, since the anomaly is non-vanishing. The same dynamics that is responsible for theη′potential is also responsible for the axion potential. We present a simple derivation of the axion mass formula for an arbitrary number of flavors.more » « less
- 
            A bstract We introduce a systematic approach to constructing $$ \mathcal{N} $$ N = 1 Lagrangians for a class of interacting $$ \mathcal{N} $$ N = 2 SCFTs. We analyse in detail the simplest case of the construction, arising from placing branes at an orientifolded ℂ 2 / ℤ 2 singularity. In this way we obtain Lagrangian descriptions for all the R 2 ,k theories. The rank one theories in this class are the E 6 Minahan-Nemeschansky theory and the C 2 × U(1) Argyres-Wittig theory. The Lagrangians that arise from our brane construction manifestly exhibit either the entire expected flavour symmetry group of the SCFT (for even k ) or a full-rank subgroup thereof (for odd k ), so we can compute the full superconformal index of the $$ \mathcal{N} $$ N = 2 SCFTs, and also systematically identify the Higgsings associated to partial closing of punctures.more » « less
- 
            We study the gauging of a global U(1) symmetry in a gapped system in(2+1)d. The gauging procedure has been well-understood for a finiteglobal symmetry group, which leads to a new gapped phase with emergentgauge structure and can be described algebraically using themathematical framework of modular tensor category (MTC). We develop acategorical description of U(1) gauging in a MTC, taking into accountthe dynamics of U(1) gauge field absent in the finite group case. Whenthe ungauged system has a non-zero Hall conductance, the gauged theoryremains gapped and we determine the complete set of anyon data for thegauged theory. On the other hand, when the Hall conductance vanishes, weargue that gauging has the same effect of condensing a special Abeliananyon nucleated by inserting 2\pi 2 π U(1) flux. We apply our procedure to theSU(2) _k k MTCs and derive the full MTC data for the \mathbb{Z}_k ℤ k parafermion MTCs. We also discuss a dual U(1) symmetry that emergesafter the original U(1) symmetry of an MTC is gauged.more » « less
- 
            A<sc>bstract</sc> In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions, extending our previous work. Specifically, in this work we discuss more general gauged noninvertible symmetries in which the noninvertible symmetry is not multiplicity free, and discuss the case of Rep(A4) in detail. We realize Rep(A4) gaugings for thec= 1 CFT at the exceptional point in the moduli space and find new self-duality under gauging a certain non-group algebra object, leading to a larger noninvertible symmetry Rep(SL(2, ℤ3)). We also discuss more general examples of decomposition in two-dimensional gauge theories with trivially-acting gauged noninvertible symmetries.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    