skip to main content


Title: Memory and creativity: A meta-analytic examination of the relationship between memory systems and creative cognition
Increasing evidence suggests that specific memory systems (e.g., semantic vs. episodic) may support specific creative thought processes. However, there are a number of inconsistencies in the literature regarding the strength, direction, and influence of different memory (semantic, episodic, working, and short-term) and creativity (divergent and convergent thinking) types, as well as the influence of external factors (age, stimuli modality) on this purported relationship. In this meta-analysis, we examined 525 correlations from 79 published studies and unpublished datasets, representing data from 12,846 individual participants. We found a small but significant (r = .19) correlation between memory and creative cognition. Among semantic, episodic, working, and short-term memory, all correlations were significant, but semantic memory – particularly verbal fluency, the ability to strategically retrieve information from long-term memory – was found to drive this relationship. Further, working memory capacity was found to be more strongly related to convergent than divergent creative thinking. We also found that within visual creativity, the relationship with visual memory was greater than that of verbal memory, but within verbal creativity, the relationship with verbal memory was greater than that of visual memory. Finally, the memory-creativity correlation was larger for children compared to young adults despite no impact of age on the overall effect size. These results yield three key conclusions: (1) semantic memory supports both verbal and nonverbal creative thinking, (2) working memory supports convergent creative thinking, and (3) the cognitive control of memory is central to performance on creative thinking tasks.  more » « less
Award ID(s):
1920653
PAR ID:
10525788
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Psychonomic Bulletin & Review
Volume:
30
Issue:
6
ISSN:
1069-9384
Page Range / eLocation ID:
2116 to 2154
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crystallized intelligence (Gc)—knowledge acquired through education and experience—supports creativity. Yet whether Gc contributes to creativity beyond providing access to more knowledge, remains unclear. We explore the role of a “flexible” semantic memory network structure as a potential shared mechanism of Gc and creativity. Across two studies (N = 506 and N = 161) participants completed Gc tests of vocabulary knowledge and were divided into low, medium, and high Gc groups. They also completed two alternate uses tasks, to assess verbal creativity, and a semantic fluency task, to estimate semantic memory networks. Across both studies, the semantic memory network structure of the high Gc group was more flexible—less structured, more clustered, and more interconnected—than that of the low Gc group. The high Gc group also outperformed the low Gc group on the creativity tasks. Our results suggest that flexible access to semantic memory supports both verbal intelligence and creativity. 
    more » « less
  2. null (Ed.)
    Recent studies of creative cognition have revealed interactions between functional brain networks involved in the generation of novel ideas; however, the neural basis of creativity is highly complex and presents a great challenge in the field of cognitive neuroscience, partly because of ambiguity around how to assess creativity. We applied a novel computational method of verbal creativity assessment—semantic distance—and performed weighted degree functional connectivity analyses to explore how individual differences in assembly of resting-state networks are associated with this objective creativity assessment. To measure creative performance, a sample of healthy adults ( n = 175) completed a battery of divergent thinking (DT) tasks, in which they were asked to think of unusual uses for everyday objects. Computational semantic models were applied to calculate the semantic distance between objects and responses to obtain an objective measure of DT performance. All participants underwent resting-state imaging, from which we computed voxel-wise connectivity matrices between all gray matter voxels. A linear regression analysis was applied between DT and weighted degree of the connectivity matrices. Our analysis revealed a significant connectivity decrease in the visual-temporal and parietal regions, in relation to increased levels of DT. Link-level analyses showed higher local connectivity within visual regions was associated with lower DT, whereas projections from the precuneus to the right inferior occipital and temporal cortex were positively associated with DT. Our results demonstrate differential patterns of resting-state connectivity associated with individual creative thinking ability, extending past work using a new application to automatically assess creativity via semantic distance. 
    more » « less
  3. Abstract Education is central to the acquisition of knowledge, such as when children learn new concepts. It is unknown, however, whether educational differences impact not only what concepts children learn, but how those concepts come to be represented in semantic memory—a system that supports higher cognitive functions, such as creative thinking. Here we leverage computational network science tools to study hidden knowledge structures of 67 Swiss schoolchildren from two distinct educational backgrounds—Montessori and traditional, matched on socioeconomic factors and nonverbal intelligence—to examine how educational experience shape semantic memory and creative thinking. We find that children experiencing Montessori education show a more flexible semantic network structure (high connectivity/short paths between concepts, less modularity) alongside higher scores on creative thinking tests. The findings indicate that education impacts how children represent concepts in semantic memory and suggest that different educational experiences can affect higher cognitive functions, including creative thinking. 
    more » « less
  4. null (Ed.)
    Parkinson's disease (PD) patients receiving dopaminergic treatment may experience bursts of creativity. Although this phenomenon is sometimes recognized among patients and their clinicians, the association between dopamine replacement therapy (DRT) in PD patients and creativity remains underexplored. It is unclear, for instance, whether DRT affects creativity through convergent or divergent thinking, idea generation, or a general lack of inhibition. It is also unclear whether DRT only augments pre-existing creative attributes or generates creativity de novo . Here, we tested a group of PD patients when “on” and “off” dopaminergic treatment on a series of tests of creative problem-solving (Alternative Uses Task, Compound Remote Associates, Rebus Puzzles), and related their performance to a group of matched healthy controls as well as to their pre-PD creative skills and measures of inhibition/impulsivity. Results did not provide strong evidence that DRT improved creative thinking in PD patients. Rather, PD patients “on” medication showed less flexibility in divergent thinking, generated fewer ideas via insight, and showed worse performance in convergent thinking overall (by making more errors) than healthy controls. Pre-PD creative skills predicted enhanced flexibility and fluency in divergent thinking when PD patients were “on” medication. However, results on convergent thinking were mixed. Finally, PD patients who exhibited deficits in a measure of inhibitory control showed weaker convergent thinking while “on” medication, supporting previous evidence on the importance of inhibitory control in creative problem-solving. Altogether, results do not support the hypothesis that DRT promotes creative thinking in PD. We speculate that bursts of artistic production in PD are perhaps conflated with creativity due to lay conceptions of creativity (i.e., an art-bias). 
    more » « less
  5. null (Ed.)
    Metaphors are a common way to express creative language, yet the cognitive basis of figurative language production remains poorly understood. Previous studies found that higher creative individuals can better comprehend novel metaphors, potentially due to a more flexible semantic memory network structure conducive to remote conceptual combination. The present study extends this domain to creative metaphor production and examined whether the ability to produce creative metaphors is related to variation in the structure of semantic memory. Participants completed a creative metaphor production task and two verbal fluency tasks. They were divided into two equal groups based on their creative metaphor production score. The semantic networks of these two groups were estimated and analyzed based on their verbal fluency responses using a computational network science approach. Results revealed that the semantic networks of high-metaphor producing individuals were more flexible, clustered, and less rigid than that of the low-metaphor producing individuals. Importantly, these results replicated across both semantic categories. The findings provide the first evidence that a flexible, clustered, and less rigid semantic memory structure relates to people’s ability to produce figurative language, extending the growing literature on the role of semantic networks in creativity to the domain of metaphor production. 
    more » « less