skip to main content


Title: Platform-independent estimation of human physiological time from single blood samples

Abundant epidemiological evidence links circadian rhythms to human health, from heart disease to neurodegeneration. Accurate determination of an individual’s circadian phase is critical for precision diagnostics and personalized timing of therapeutic interventions. To date, however, we still lack an assay for physiological time that is accurate, minimally burdensome to the patient, and readily generalizable to new data. Here, we present TimeMachine, an algorithm to predict the human circadian phase using gene expression in peripheral blood mononuclear cells from a single blood draw. Once trained on data from a single study, we validated the trained predictor against four independent datasets with distinct experimental protocols and assay platforms, demonstrating that it can be applied generalizably. Importantly, TimeMachine predicted circadian time with a median absolute error ranging from 1.65 to 2.7 h, regardless of systematic differences in experimental protocol and assay platform, without renormalizing the data or retraining the predictor. This feature enables it to be flexibly applied to both new samples and existing data without limitations on the transcriptomic profiling technology (microarray, RNAseq). We benchmark TimeMachine against competing approaches and identify the algorithmic features that contribute to its performance.

 
more » « less
Award ID(s):
1764421
PAR ID:
10525840
Author(s) / Creator(s):
;
Publisher / Repository:
NAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
3
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Circadian clocks play a key role in regulating a vast array of biological processes, with significant implications for human health. Accurate assessment of physiological time using transcriptional biomarkers found in human blood can significantly improve diagnosis of circadian disorders and optimize the delivery time of therapeutic treatments. To be useful, such a test must be accurate, minimally burdensome to the patient, and readily generalizable to new data. A major obstacle in development of gene expression biomarker tests is the diversity of measurement platforms and the inherent variability of the data, often resulting in predictors that perform well in the original datasets but cannot be universally applied to new samples collected in other settings. Here, we introduce TimeSignature, an algorithm that robustly infers circadian time from gene expression. We demonstrate its application in data from three independent studies using distinct microarrays and further validate it against a new set of samples profiled by RNA-sequencing. Our results show that TimeSignature is more accurate and efficient than competing methods, estimating circadian time to within 2 h for the majority of samples. Importantly, we demonstrate that once trained on data from a single study, the resulting predictor can be universally applied to yield highly accurate results in new data from other studies independent of differences in study population, patient protocol, or assay platform without renormalizing the data or retraining. This feature is unique among expression-based predictors and addresses a major challenge in the development of generalizable, clinically useful tests. 
    more » « less
  2. Mathematical models have a long and influential history in the study of human circadian rhythms. Accurate predictive models for the human circadian light response have been used to study the impact of a host of light exposures on the circadian system. However, generally, these models do not account for the physiological basis of these rhythms. We illustrate a new paradigm for deriving models of the human circadian light response. Beginning from a high-dimensional model of the circadian neural network, we systematically derive low-dimensional models using an approach motivated by experimental measurements of circadian neurons. This systematic reduction allows for the variables and parameters of the derived model to be interpreted in a physiological context. We fit and validate the resulting models to a library of experimental measurements. Finally, we compare model predictions for experimental measurements of light levels and discuss the differences between our model’s predictions and previous models. Our modeling paradigm allows for the integration of experimental measurements across the single-cell, tissue, and behavioral scales, thereby enabling the development of accurate low-dimensional models for human circadian rhythms.

     
    more » « less
  3. null (Ed.)
    Introduction: Vaso-occlusive crises (VOCs) are a leading cause of morbidity and early mortality in individuals with sickle cell disease (SCD). These crises are triggered by sickle red blood cell (sRBC) aggregation in blood vessels and are influenced by factors such as enhanced sRBC and white blood cell (WBC) adhesion to inflamed endothelium. Advances in microfluidic biomarker assays (i.e., SCD Biochip systems) have led to clinical studies of blood cell adhesion onto endothelial proteins, including, fibronectin, laminin, P-selectin, ICAM-1, functionalized in microchannels. These microfluidic assays allow mimicking the physiological aspects of human microvasculature and help characterize biomechanical properties of adhered sRBCs under flow. However, analysis of the microfluidic biomarker assay data has so far relied on manual cell counting and exhaustive visual morphological characterization of cells by trained personnel. Integrating deep learning algorithms with microscopic imaging of adhesion protein functionalized microfluidic channels can accelerate and standardize accurate classification of blood cells in microfluidic biomarker assays. Here we present a deep learning approach into a general-purpose analytical tool covering a wide range of conditions: channels functionalized with different proteins (laminin or P-selectin), with varying degrees of adhesion by both sRBCs and WBCs, and in both normoxic and hypoxic environments. Methods: Our neural networks were trained on a repository of manually labeled SCD Biochip microfluidic biomarker assay whole channel images. Each channel contained adhered cells pertaining to clinical whole blood under constant shear stress of 0.1 Pa, mimicking physiological levels in post-capillary venules. The machine learning (ML) framework consists of two phases: Phase I segments pixels belonging to blood cells adhered to the microfluidic channel surface, while Phase II associates pixel clusters with specific cell types (sRBCs or WBCs). Phase I is implemented through an ensemble of seven generative fully convolutional neural networks, and Phase II is an ensemble of five neural networks based on a Resnet50 backbone. Each pixel cluster is given a probability of belonging to one of three classes: adhered sRBC, adhered WBC, or non-adhered / other. Results and Discussion: We applied our trained ML framework to 107 novel whole channel images not used during training and compared the results against counts from human experts. As seen in Fig. 1A, there was excellent agreement in counts across all protein and cell types investigated: sRBCs adhered to laminin, sRBCs adhered to P-selectin, and WBCs adhered to P-selectin. Not only was the approach able to handle surfaces functionalized with different proteins, but it also performed well for high cell density images (up to 5000 cells per image) in both normoxic and hypoxic conditions (Fig. 1B). The average uncertainty for the ML counts, obtained from accuracy metrics on the test dataset, was 3%. This uncertainty is a significant improvement on the 20% average uncertainty of the human counts, estimated from the variance in repeated manual analyses of the images. Moreover, manual classification of each image may take up to 2 hours, versus about 6 minutes per image for the ML analysis. Thus, ML provides greater consistency in the classification at a fraction of the processing time. To assess which features the network used to distinguish adhered cells, we generated class activation maps (Fig. 1C-E). These heat maps indicate the regions of focus for the algorithm in making each classification decision. Intriguingly, the highlighted features were similar to those used by human experts: the dimple in partially sickled RBCs, the sharp endpoints for highly sickled RBCs, and the uniform curvature of the WBCs. Overall the robust performance of the ML approach in our study sets the stage for generalizing it to other endothelial proteins and experimental conditions, a first step toward a universal microfluidic ML framework targeting blood disorders. Such a framework would not only be able to integrate advanced biophysical characterization into fast, point-of-care diagnostic devices, but also provide a standardized and reliable way of monitoring patients undergoing targeted therapies and curative interventions, including, stem cell and gene-based therapies for SCD. Disclosures Gurkan: Dx Now Inc.: Patents & Royalties; Xatek Inc.: Patents & Royalties; BioChip Labs: Patents & Royalties; Hemex Health, Inc.: Consultancy, Current Employment, Patents & Royalties, Research Funding. 
    more » « less
  4. The human circadian pacemaker entrains to the 24-h day, but interindividual differences in properties of the pacemaker, such as intrinsic period, affect chronotype and mediate responses to challenges to the circadian system, such as shift work and jet lag, and the efficacy of therapeutic interventions such as light therapy. Robust characterization of circadian properties requires desynchronization of the circadian system from the rest-activity cycle, and these forced desynchrony protocols are very time and resource intensive. However, circadian protocols designed to derive the relationship between light intensity and phase shift, which is inherently affected by intrinsic period, may be applied more broadly. To exploit this relationship, we applied a mathematical model of the human circadian pacemaker with a Markov-Chain Monte Carlo parameter estimation algorithm to estimate the representative group intrinsic period for a group of participants using their collective illuminance-response curve data. We first validated this methodology using simulated illuminance-response curve data in which the intrinsic period was known. Over a physiological range of intrinsic periods, this method accurately estimated the representative intrinsic period of the group. We also applied the method to previously published experimental data describing the illuminance-response curve for a group of healthy adult participants. We estimated the study participants’ representative group intrinsic period to be 24.26 and 24.27 h using uniform and normal priors, respectively, consistent with estimates of the average intrinsic period of healthy adults determined using forced desynchrony protocols. Our results establish an approach to estimate a population’s representative intrinsic period from illuminance-response curve data, thereby facilitating the characterization of intrinsic period across a broader range of participant populations than could be studied using forced desynchrony protocols. Future applications of this approach may improve the understanding of demographic differences in the intrinsic circadian period. 
    more » « less
  5. null (Ed.)
    Abstract From smart work scheduling to optimal drug timing, there is enormous potential in translating circadian rhythms research results for precision medicine in the real world. However, the pursuit of such effort requires the ability to accurately estimate circadian phase outside of the laboratory. One approach is to predict circadian phase noninvasively using light and activity measurements and mathematical models of the human circadian clock. Most mathematical models take light as an input and predict the effect of light on the human circadian system. However, consumer-grade wearables that are already owned by millions of individuals record activity instead of light, which prompts an evaluation of the accuracy of predicting circadian phase using motion alone. Here, we evaluate the ability of four different models of the human circadian clock to estimate circadian phase from data acquired by wrist-worn wearable devices. Multiple datasets across populations with varying degrees of circadian disruption were used for generalizability. Though the models we test yield similar predictions, analysis of data from 27 shift workers with high levels of circadian disruption shows that activity, which is recorded in almost every wearable device, is better at predicting circadian phase than measured light levels from wrist-worn devices when processed by mathematical models. In those living under normal living conditions, circadian phase can typically be predicted to within 1 h, even with data from a widely available commercial device (the Apple Watch). These results show that circadian phase can be predicted using existing data passively collected by millions of individuals with comparable accuracy to much more invasive and expensive methods. 
    more » « less