skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency
Latent diffusion models have been demonstrated to generate high-quality images, while offering efficiency in model training compared to diffusion models operating in the pixel space. However, incorporating latent diffusion models to solve inverse problems remains a challenging problem due to the nonlinearity of the encoder and decoder. To address these issues, we propose ReSample, an algorithm that can solve general inverse problems with pre-trained latent diffusion models. Our algorithm incorporates data consistency by solving an optimization problem during the reverse sampling process, a concept that we term as hard data consistency. Upon solving this optimization problem, we propose a novel resampling scheme to map the measurement-consistent sample back onto the noisy data manifold and theoretically demonstrate its benefits. Lastly, we apply our algorithm to solve a wide range of linear and nonlinear inverse problems in both natural and medical images, demonstrating that our approach outperforms existing state-of-the-art approaches, including those based on pixel-space diffusion models.  more » « less
Award ID(s):
2212066 2143904 2212326
PAR ID:
10525917
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
International Conference on Learning Representations
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Solving a bilevel optimization problem is at the core of several machine learning problems such as hyperparameter tuning, data denoising, meta- and few-shot learning, and training-data poisoning. Different from simultaneous or multi-objective optimization, the steepest descent direction for minimizing the upper-level cost in a bilevel problem requires the inverse of the Hessian of the lower-level cost. In this work, we propose a novel algorithm for solving bilevel optimization problems based on the classical penalty function approach. Our method avoids computing the Hessian inverse and can handle constrained bilevel problems easily. We prove the convergence of the method under mild conditions and show that the exact hypergradient is obtained asymptotically. Our method's simplicity and small space and time complexities enable us to effectively solve large-scale bilevel problems involving deep neural networks. We present results on data denoising, few-shot learning, and training-data poisoning problems in a large-scale setting. Our results show that our approach outperforms or is comparable to previously proposed methods based on automatic differentiation and approximate inversion in terms of accuracy, run-time, and convergence speed. 
    more » « less
  2. Diffusion models (DMs) are a class of generative models that allow sampling from a distribution learned over a training set. When applied to solving inverse problems, the reverse sampling steps are modified to approximately sample from a measurement-conditioned distribution. However, these modifications may be unsuitable for certain settings (e.g., presence of measurement noise) and non-linear tasks, as they often struggle to correct errors from earlier steps and generally require a large number of optimization and/or sampling steps. To address these challenges, we state three conditions for achieving measurement-consistent diffusion trajectories. Building on these conditions, we propose a new optimization-based sampling method that not only enforces standard data manifold measurement consistency and forward diffusion consistency, as seen in previous studies, but also incorporates our proposed step-wise and network-regularized backward diffusion consistency that maintains a diffusion trajectory by optimizing over the input of the pre-trained model at every sampling step. By enforcing these conditions (implicitly or explicitly), our sampler requires significantly fewer reverse steps. Therefore, we refer to our method as Step-wise Triple- Consistent Sampling (SITCOM). Compared to SOTA baselines, our experiments across several linear and non-linear tasks (with natural and medical images) demonstrate that SITCOM achieves competitive or superior results in terms of standard similarity metrics and run-time. 
    more » « less
  3. We propose Intermediate Layer Optimization (ILO), a novel optimization algorithm for solving inverse problems with deep generative models. Instead of optimizing only over the initial latent code, we progressively change the input layer obtaining successively more expressive generators. To explore the higher dimensional spaces, our method searches for latent codes that lie within a small l1 ball around the manifold induced by the previous layer. Our theoretical analysis shows that by keeping the radius of the ball relatively small, we can improve the established error bound for compressed sensing with deep generative models. We empirically show that our approach outperforms state-of-the-art methods introduced in StyleGAN-2 and PULSE for a wide range of inverse problems including inpainting, denoising, super-resolution and compressed sensing. 
    more » « less
  4. Implicit neural representations (INRs) have emerged as a powerful tool for solving inverse problems in computer vision and computational imaging. INRs represent images as continuous domain functions realized by a neural network taking spatial coordinates as inputs. However, unlike traditional pixel representations, little is known about the sample complexity of estimating images using INRs in the context of linear inverse problems. Towards this end, we study the sampling requirements for recovery of a continuous domain image from its low-pass Fourier coefficients by fitting a single hidden-layer INR with ReLU activation and a Fourier features layer using a generalized form of weight decay regularization. Our key insight is to relate minimizers of this non-convex parameter space optimization problem to minimizers of a convex penalty defined over a space of measures. We identify a sufficient number of samples for which an image realized by a width-1 INR is exactly recoverable by solving the INR training problem, and give a conjecture for the general width-W case. To validate our theory, we empirically assess the probability of achieving exact recovery of images realized by low-width single hidden-layer INRs, and illustrate the performance of INR on super-resolution recovery of more realistic continuous domain phantom images. 
    more » « less
  5. Inverse problems arise in a multitude of applications, where the goal is to recover a clean signal from noisy and possibly (non)linear observations. The difficulty of a reconstruction problem depends on multiple factors, such as the ground truth signal structure, the severity of the degradation and the complex interactions between the above. This results in natural sample-by-sample variation in the difficulty of a reconstruction problem. Our key observation is that most existing inverse problem solvers lack the ability to adapt their compute power to the difficulty of the reconstruction task, resulting in subpar performance and wasteful resource allocation. We propose a novel method, severity encoding, to estimate the degradation severity of corrupted signals in the latent space of an autoencoder. We show that the estimated severity has strong correlation with the true corruption level and can provide useful hints on the difficulty of reconstruction problems on a sample-by-sample basis. Furthermore, we propose a reconstruction method based on latent diffusion models that leverages the predicted degradation severities to fine-tune the reverse diffusion sampling trajectory and thus achieve sample-adaptive inference times. Our framework, Flash-Diffusion, acts as a wrapper that can be combined with any latent diffusion-based baseline solver, imbuing it with sample-adaptivity and acceleration. We perform experiments on both linear and nonlinear inverse problems and demonstrate that our technique greatly improves the performance of the baseline solver and achieves up to 10× acceleration in mean sampling speed. 
    more » « less