Microbes have been critical drivers of evolutionary innovation in animals. To understand the processes that influence the origin of specialized symbiotic organs, we report the sequencing and analysis of the genome of
This content will become publicly available on February 5, 2025
Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of class
Many aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15–120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host–symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod–bacteria relationships and provides a foundation to explore defensive symbionts in other systems.
- Award ID(s):
- 2247195
- NSF-PAR ID:
- 10525938
- Editor(s):
- Rudi, Knut
- Publisher / Repository:
- ASM PRESS
- Date Published:
- Journal Name:
- Applied and Environmental Microbiology
- ISSN:
- 0099-2240
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Euprymna scolopes , a model cephalopod with richly characterized host–microbe interactions. We identified large-scale genomic reorganization shared betweenE. scolopes andOctopus bimaculoides and posit that this reorganization has contributed to the evolution of cephalopod complexity. To reveal genomic signatures of host–symbiont interactions, we focused on two specialized organs ofE. scolopes : the light organ, which harbors a monoculture ofVibrio fischeri , and the accessory nidamental gland (ANG), a reproductive organ containing a bacterial consortium. Our findings suggest that the two symbiotic organs withinE. scolopes originated by different evolutionary mechanisms. Transcripts expressed in these microbe-associated tissues displayed their own unique signatures in both coding sequences and the surrounding regulatory regions. Compared with other tissues, the light organ showed an abundance of genes associated with immunity and mediating light, whereas the ANG was enriched in orphan genes known only fromE. scolopes . Together, these analyses provide evidence for different patterns of genomic evolution of symbiotic organs within a single host. -
Abstract Background Many animals live in intimate associations with a species-rich microbiome. A key factor in maintaining these beneficial associations is fidelity, defined as the stability of associations between hosts and their microbiota over multiple host generations. Fidelity has been well studied in terrestrial hosts, particularly insects, over longer macroevolutionary time. In contrast, little is known about fidelity in marine animals with species-rich microbiomes at short microevolutionary time scales, that is at the level of a single host population. Given that natural selection acts most directly on local populations, studies of microevolutionary partner fidelity are important for revealing the ecological and evolutionary processes that drive intimate beneficial associations within animal species.
Results In this study on the obligate symbiosis between the gutless marine annelid
Olavius algarvensis and its consortium of seven co-occurring bacterial symbionts, we show that partner fidelity varies across symbiont species from strict to absent over short microevolutionary time. Using a low-coverage sequencing approach that has not yet been applied to microbial community analyses, we analysed the metagenomes of 80O. algarvensis individuals from the Mediterranean and compared host mitochondrial and symbiont phylogenies based on single-nucleotide polymorphisms across genomes. Fidelity was highest for the two chemoautotrophic, sulphur-oxidizing symbionts that dominated the microbial consortium of allO. algarvensis individuals. In contrast, fidelity was only intermediate to absent in the sulphate-reducing and spirochaetal symbionts with lower abundance. These differences in fidelity are likely driven by both selective and stochastic forces acting on the consistency with which symbionts are vertically transmitted.Conclusions We hypothesize that variable degrees of fidelity are advantageous for
O. algarvensis by allowing the faithful transmission of their nutritionally most important symbionts and flexibility in the acquisition of other symbionts that promote ecological plasticity in the acquisition of environmental resources. -
Ding, Xia (Ed.)
ABSTRACT The skin microbiome is an essential line of host defense against pathogens, yet our understanding of microbial communities and how they change when hosts become infected is limited. We investigated skin microbial composition in three North American bat species (
Myotis lucifugus ,Eptesicus fuscus , andPerimyotis subflavus ) that have been impacted by the infectious disease, white-nose syndrome, caused by an invasive fungal pathogen,Pseudogymnoascus destructans . We compared bacterial and fungal composition from 154 skin swab samples and 70 environmental samples using a targeted 16S rRNA and internal transcribed spacer amplicon approach. We found that forM. lucifugus , a species that experiences high mortality from white-nose syndrome, bacterial microbiome diversity was dramatically lower whenP. destructans was present. Key bacterial families—including those potentially involved in pathogen defense—significantly differed in abundance in bats infected withP. destructans compared to uninfected bats. However, skin bacterial diversity was not lower inE. fuscus orP. subflavus whenP. destructans was present despite populations of the latter species declining sharply from white-nose syndrome. The fungal species present on bats substantially overlapped with the fungal taxa present in the environment at the site where the bat was sampled, but fungal community composition was unaffected by the presence ofP. destructans for any of the three bat species. This species-specific alteration in bat skin bacterial microbiomes after pathogen invasion may suggest a mechanism for the severity of white-nose syndrome inM. lucifugus but not for other bat species impacted by the disease.IMPORTANCE Inherent complexities in the composition of microbiomes can often preclude investigations of microbe-associated diseases. Instead of single organisms being associated with disease, community characteristics may be more relevant. Longitudinal microbiome studies of the same individual bats as pathogens arrive and infect a population are the ideal experiment but remain logistically challenging; therefore, investigations like our approach that are able to correlate invasive pathogens to alterations within a microbiome may be the next best alternative. The results of this study potentially suggest that microbiome-host interactions may determine the likelihood of infection. However, the contrasting relationship between Pd and the bacterial microbiomes of
Myotis lucifugus andPerimyotis subflavus indicate that we are just beginning to understand how the bat microbiome interacts with a fungal invader such as Pd. -
Bacterial symbionts are essential components of healthy biological systems. They are increasingly recognized as important factors in the study and management of threatened species and ecosystems. Despite management shifts at the ecosystem level, microbial communities are often neglected in discussions of holobiont conservation in favor of the primary members of a symbiosis. In this study, we addressed the bacterial community knowledge gap for one of two federally endangered lichen species in the United States, Cetradonia linearis (Cladoniaceae). We collected 28 samples of the endangered rock gnome lichen (Cetradonia linearis) from 13 sites and characterized bacterial communities in thalli using 16S rRNA metabarcoding to investigate the factors influencing the microbiome composition and diversity within the thallus. We found that Proteobacteria (37.8% ± 10.3) and Acidobacteria (25.9% ± 6.0) were the most abundant phyla recovered. Cyanobacteria were a major component of the microbiome in some individuals, despite this species associating with a green algal symbiont. Habitat, climate, and geography were all found to have significant influences on bacterial community composition. An analysis of the core microbiome at a 90% threshold revealed shared amplicon sequence variants in the microbiomes of other lichens in the family Cladoniaceae. We concluded that the bacterial microbiome of Cetradonia linearis is influenced by environmental factors and that some bacterial taxa may be core to this group. Further exploration into the microbiomes of rare lichen species is needed to understand the importance of bacterial symbionts to lichen diversity and distributions.
-
ABSTRACT Host-associated microbial communities can influence physiological processes of macroorganisms, including contributing to infectious disease resistance. For instance, some bacteria that live on amphibian skin produce antifungal compounds that inhibit two lethal fungal pathogens, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Therefore, differences in microbiome composition among host species or populations within a species can contribute to variation in susceptibility to Bd/Bsal. This study applies 16S rRNA sequencing to characterize the skin bacterial microbiomes of three widespread terrestrial salamander genera native to the western United States. Using a metacommunity structure analysis, we identified dispersal barriers for these influential bacteria between salamander families and localities. We also analysed the effects of habitat characteristics such as percent natural cover and temperature seasonality on the microbiome. We found that certain environmental variables may influence the skin microbial communities of some salamander genera more strongly than others. Each salamander family had a somewhat distinct community of putative anti-Bd skin bacteria, suggesting that salamanders may select for a functional assembly of cutaneous symbionts that could differ in its ability to protect these amphibians from disease. Our observations raise the need to consider host identity and environmental heterogeneity during the selection of probiotics to treat wildlife diseases.