Notions of transition invariants and closure certificates have seen recent use in the formal verification of controlled dynamical systems against \omega-regular properties.Unfortunately, existing approaches face limitations in two directions.First, they require a closed-form mathematical expression representing the model of the system.Such an expression may be difficult to find, too complex to be of any use, or unavailable due to security or privacy constraints.Second, finding such invariants typically rely on optimization techniques such as sum-of-squares (SOS) or satisfiability modulo theory (SMT) solvers.This restricts the classes of systems that need to be formally verified.To address these drawbacks, we introduce a notion of neural closure certificates.We present a data-driven algorithm that trains a neural network to represent a closure certificate.Our approach is formally correct under some mild assumptions, i.e., one is able to formally show that the unknown system satisfies the \omega-regular property of interest if a neural closure certificate can be computed.Finally, we demonstrate the efficacy of our approach with relevant case studies.
more »
« less
Neural Closure Certificates
Notions of transition invariants and closure certificates have seen recent use in the formal verification of controlled dy- namical systems against ω-regular properties. The existing approaches face limitations in two directions. First, they re- quire a closed-form mathematical expression representing the model of the system. Such an expression may be difficult to find, too complex to be of any use, or unavailable due to security or privacy constraints. Second, finding such invari- ants typically rely on optimization techniques such as sum-of- squares (SOS) or satisfiability modulo theory (SMT) solvers. This restricts the classes of systems that need to be formally verified. To address these drawbacks, we introduce a notion of neural closure certificates. We present a data-driven algo- rithm that trains a neural network to represent a closure cer- tificate. Our approach is formally correct under some mild as- sumptions, i.e., one is able to formally show that the unknown system satisfies the ω-regular property of interest if a neural closure certificate can be computed. Finally, we demonstrate the efficacy of our approach with relevant case studies.
more »
« less
- Award ID(s):
- 2146563
- PAR ID:
- 10526019
- Publisher / Repository:
- The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A barrier certificate, defined over the states of a dynamical system, is a real-valued function whose zero level set characterizes an in- ductively verifiable state invariant separating reachable states from unsafe ones. When combined with powerful decision procedures— such as sum-of-squares programming (SOS) or satisfiability-modulo- theory solvers (SMT)—barrier certificates enable an automated de- ductive verification approach to safety. The barrier certificate ap- proach has been extended to refute LTL and l -regular specifications by separating consecutive transitions of corresponding l -automata in the hope of denying all accepting runs. Unsurprisingly, such tactics are bound to be conservative as refutation of recurrence properties requires reasoning about the well-foundedness of the transitive closure of the transition relation. This paper introduces the notion of closure certificates as a natural extension of barrier certificates from state invariants to transition invariants. We aug- ment these definitions with SOS and SMT based characterization for automating the search of closure certificates and demonstrate their effectiveness over some case studies.more » « less
-
The notion of comparison between system runs is fundamental in formal verification. This concept is implicitly present in the verification of qualitative systems, and is more pronounced in the verification of quantitative systems. In this work, we identify a novel mode of comparison in quantitative systems: the online comparison of the aggregate values of two sequences of quantitative weights. This notion is embodied by comparator automata (comparators, in short), a new class of automata that read two infinite sequences of weights synchronously and relate their aggregate values. Weshowthat aggregate functions that can be represented with B¨uchi automaton result in comparators that are finite-state and accept by the B¨uchi condition as well. Such ω-regular comparators further lead to generic algorithms for a number of well-studied problems, including the quantitative inclusion and winning strategies in quantitative graph games with incomplete information, as well as related non-decision problems, such as obtaining a f inite representation of all counterexamples in the quantitative inclusion problem. We study comparators for two aggregate functions: discounted-sum and limit-average. We prove that the discounted-sum comparator is ω-regular iff the discount-factor is an integer. Not every aggregate function, however, has an ω-regular comparator. Specifically, we show that the language of sequence-pairs for which limit-average aggregates exist is neither ω-regular nor ω-context-free. Given this result, we introduce the notion of prefixaverage as a relaxation of limit-average aggregation, and show that it admits ω-context-free comparators i.e. comparator automata expressed by B¨uchi pushdown automata.more » « less
-
Groote, Jan Friso; Larsen, Kim Guldstrand (Ed.)Deep learning has emerged as an effective approach for creating modern software systems, with neural networks often surpassing hand-crafted systems. Unfortunately, neural networks are known to suffer from various safety and security issues. Formal verification is a promising avenue for tackling this difficulty, by formally certifying that networks are correct. We propose an SMT-based technique for verifying binarized neural networks — a popular kind of neural network, where some weights have been binarized in order to render the neural network more memory and energy efficient, and quicker to evaluate. One novelty of our technique is that it allows the verification of neural networks that include both binarized and non-binarized components. Neural network verification is computationally very difficult, and so we propose here various optimizations, integrated into our SMT procedure as deduction steps, as well as an approach for parallelizing verification queries. We implement our technique as an extension to the Marabou framework, and use it to evaluate the approach on popular binarized neural network architectures.more » « less
-
The expanding role of reinforcement learning (RL) in safety-critical system design has promoted ω-automata as a way to express learning requirements—often non-Markovian—with greater ease of expression and interpretation than scalar reward signals. However, real-world sequential decision making situations often involve multiple, potentially conflicting, objectives. Two dominant approaches to express relative preferences over multiple objectives are: (1)weighted preference, where the decision maker provides scalar weights for various objectives, and (2)lexicographic preference, where the decision maker provides an order over the objectives such that any amount of satisfaction of a higher-ordered objective is preferable to any amount of a lower-ordered one. In this article, we study and develop RL algorithms to compute optimal strategies in Markov decision processes against multiple ω-regular objectives under weighted and lexicographic preferences. We provide a translation from multiple ω-regular objectives to a scalar reward signal that is bothfaithful(maximising reward means maximising probability of achieving the objectives under the corresponding preference) andeffective(RL quickly converges to optimal strategies). We have implemented the translations in a formal reinforcement learning tool,Mungojerrie, and we present an experimental evaluation of our technique on benchmark learning problems.more » « less
An official website of the United States government

