skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assume-Guarantee Reinforcement Learning
We present a modular approach to reinforcement learning (RL) in environments consisting of simpler components evolving in parallel. A monolithic view of such modular environments may be prohibitively large to learn, or may require unrealizable communication between the components in the form of a centralized controller. Our proposed approach is based on the assume-guarantee paradigm where the optimal control for the individual components is synthesized in isolation by making assumptions about the behaviors of neighboring components, and providing guarantees about their own behavior. We express these assume-guarantee contracts as regular languages and provide automatic translations to scalar rewards to be used in RL. By combining local probabilities of satisfaction for each component, we provide a lower bound on the probability of sat- isfaction of the complete system. By solving a Markov game for each component, RL can produce a controller for each component that maximizes this lower bound. The controller utilizes the information it receives through communication, observations, and any knowledge of a coarse model of other agents. We experimentally demonstrate the efficiency of the proposed approach on a variety of case studies.  more » « less
Award ID(s):
2146563 2009022
PAR ID:
10526020
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Connected and autonomous vehicles (CAVs) rely on communication channels to improve safety and efficiency. However, this connectivity leaves them vulnerable to potential cyberattacks, such as false data injection (FDI) attacks. We can mitigate the effect of FDI attacks by designing secure control techniques. However, tuning control parameters is essential for the safety and security of such techniques, and there is no systematic approach to achieving that. In this article, our primary focus is on cooperative adaptive cruise control (CACC), a key component of CAVs. We develop a secure CACC by integrating model-based and learning-based approaches to detect and mitigate FDI attacks in real-time. We analyze the stability of the proposed resilient controller through Lyapunov stability analysis, identifying sufficient conditions for its effectiveness. We use these sufficient conditions and develop a reinforcement learning (RL)-based tuning algorithm to adjust the parameter gains of the controller, observer, and FDI attack estimator, ensuring the safety and security of the developed CACC under varying conditions. We evaluated the performance of the developed controller before and after optimizing parameters, and the results show about a 50% improvement in accuracy of the FDI attack estimation and a 76% enhancement in safe following distance with the optimized controller in each scenario. 
    more » « less
  2. Object insertion under tight tolerances (less than 1mm) is an important but challenging assembly task as even small errors can result in undesirable contacts. Recent efforts focused on Reinforcement Learning (RL), which often depends on careful definition of dense reward functions. This work proposes an effective strategy for such tasks that integrates traditional model-based control with RL to achieve improved insertion accuracy. The policy is trained exclusively in simulation and is zero-shot transferred to the real system. It employs a potential field-based controller to acquire a model-based policy for inserting a plug into a socket given full observability in simulation. This policy is then integrated with residual RL, which is trained in simulation given only a sparse, goal-reaching reward. A curriculum scheme over observation noise and action magnitude is used for training the residual RL policy. Both policy components use as input the SE(3) poses of both the plug and the socket and return the plug's SE(3) pose transform, which is executed by a robotic arm using a controller. The integrated policy is deployed on the real system without further training or fine-tuning, given a visual SE(3) object tracker. The proposed solution and alternatives are evaluated across a variety of objects and conditions in simulation and reality. The proposed approach outperforms recent RL-based methods in this domain and prior efforts with hybrid policies. Ablations highlight the impact of each component of the approach. 
    more » « less
  3. Object insertion under tight tolerances (less than 1mm) is an important but challenging assembly task as even small errors can result in undesirable contacts. Recent efforts focused on Reinforcement Learning (RL), which often depends on careful definition of dense reward functions. This work proposes an effective strategy for such tasks that integrates traditional model-based control with RL to achieve improved insertion accuracy. The policy is trained exclusively in simulation and is zero-shot transferred to the real system. It employs a potential field-based controller to acquire a model-based policy for inserting a plug into a socket given full observability in simulation. This policy is then integrated with residual RL, which is trained in simulation given only a sparse, goal-reaching reward. A curriculum scheme over observation noise and action magnitude is used for training the residual RL policy. Both policy components use as input the SE(3) poses of both the plug and the socket and return the plug's SE(3) pose transform, which is executed by a robotic arm using a controller. The integrated policy is deployed on the real system without further training or fine-tuning, given a visual SE(3) object tracker. The proposed solution and alternatives are evaluated across a variety of objects and conditions in simulation and reality. The proposed approach outperforms recent RL-based methods in this domain and prior efforts with hybrid policies. Ablations highlight the impact of each component of the approach. 
    more » « less
  4. Automated verification can ensure that a web page satisfies accessibility, usability, and design properties regardless of the end user's device, preferences, and assistive technologies. However, state-of-the-art verification tools for layout properties do not scale to large pages because they rely on whole-page analyses and must reason about the entire page using the complex semantics of the browser layout algorithm. This paper introduces and formalizes modular layout proofs. A modular layout proof splits a monolithic verification problem into smaller verification problems, one for each component of a web page. Each component specification can use rely/guarantee-style preconditions to make it verifiable independently of the rest of the page and enabling reuse across multiple pages. Modular layout proofs scale verification to pages an order of magnitude larger than those supported by previous approaches. We prototyped these techniques in a new proof assistant, Troika. In Troika, a proof author partitions a page into components and writes specifications for them. Troika then verifies the specifications, and uses those specifications to verify whole-page properties. Troika also enables the proof author to verify different component specifications with different verification tools, leveraging the strengths of each. In a case study, we use Troika to verify a large web page and demonstrate a speed-up of 13--1469x over existing tools, taking verification time from hours to seconds. We develop a systematic approach to writing Troika proofs and demonstrate it on 8 proofs of properties from prior work to show that modular layout proofs are short, easy to write, and provide benefits over existing tools. 
    more » « less
  5. Modular self-assembling systems typically assume that modules are present to assemble. But in sparsely observed ocean environments, modules of an aquatic modular robotic system may be separated by distances they do not have the energy to cross, and the information needed for optimal path planning is often unavailable. In this work we present a flow-based rendezvous and docking controller that allows aquatic robots in gyre-like environments to rendezvous with and dock to a target by leveraging environmental forces. This approach does not require complete knowledge of the flow, but suffices with imperfect knowledge of the flow's center and shape. We validate the performance of this control approach in both simulations and experiments relative to naive rendezvous and docking strategies, and show that energy efficiency improves as the scale of the gyre increases. 
    more » « less