Abstract DNA glycosylase MutY plays a critical role in suppression of mutations resulted from oxidative damage, as highlighted by cancer-association of the human enzyme. MutY requires a highly conserved catalytic Asp residue for excision of adenines misinserted opposite 8-oxo-7,8-dihydroguanine (OG). A nearby Asn residue hydrogen bonds to the catalytic Asp in structures of MutY and its mutation to Ser is an inherited variant in human MUTYH associated with colorectal cancer. We captured structural snapshots of N146S Geobacillus stearothermophilus MutY bound to DNA containing a substrate, a transition state analog and enzyme-catalyzed abasic site products to provide insight into the base excision mechanism of MutY and the role of Asn. Surprisingly, despite the ability of N146S to excise adenine and purine (P) in vitro, albeit at slow rates, N146S-OG:P complex showed a calcium coordinated to the purine base altering its conformation to inhibit hydrolysis. We obtained crystal structures of N146S Gs MutY bound to its abasic site product by removing the calcium from crystals of N146S-OG:P complex to initiate catalysis in crystallo or by crystallization in the absence of calcium. The product structures of N146S feature enzyme-generated β-anomer abasic sites that support a retaining mechanism for MutY-catalyzed base excision.
more »
« less
Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis
The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor.
more »
« less
- Award ID(s):
- 1856513
- PAR ID:
- 10526074
- Publisher / Repository:
- The National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 23
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plants are exquisitely sensitive to the ethylene signal and also respond to a much wider range of ethylene concentrations than would seem possible based on the simple circuitry of its primary signal transduction pathway, suggesting the existence of mechanisms for amplification and adaptation to ethylene signals. Here, such regulatory systems are considered within the context of what is known about the plant ethylene signaling pathway as well as signaling by the animal G‐protein coupled receptors, and the bacterial methyl‐accepting chemotaxis proteins. Magnitude amplification and sensitivity amplification mechanisms are considered as strategies for amplification of the ethylene signal. Several families of negative feedback regulators that desensitize plants to ethylene and thereby facilitate the ethylene adaptation response of plants are described. These negative feedback regulators include the ethylene receptors themselves, the RTE1/GR family, and the ARGOS family, all of which function at the level of the ethylene receptors to desensitize plants to ethylene. These negative regulators also include the EBF family of F‐box proteins, which target the EIN3/EIL family of transcription factors for degradation. Ethylene signal amplification and adaptation employ both transcriptional and post‐transcriptional regulation.more » « less
-
Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene insensitive2 (EIN2); and transcription factors such as EIN3, EIN3-Like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications.more » « less
-
Hydroxyapatite (HAP) exhibits a highly oriented hierarchical structure in biological hard tissues. The formation and selective crystalline orientation of HAP is a process that involves functional biomineralization proteins abundant in acidic residues. To obtain insights into the process of HAP mineralization and acidic residue binding, synthesized HAP with specific lattice planes including (001), (100), and (011) are structurally characterized following the adsorption of aspartic acid (Asp). The adsorption affinity of Asp on HAP surfaces is evaluated quantitatively and demonstrates a high dependency on the HAP morphological form. Among the synthesized HAP nanoparticles (NPs), Asp exhibits the strongest adsorption affinity to short HAP nanorods, which are composed of (100) and (011) lattice planes, followed by nanosheets with a preferential expression of the (001) facet, to which Asp displays a similar but slightly lower binding affinity. HAP nanowires, with the (100) lattice plane preferentially developed, show significantly lower affinity to Asp and evidence of multilayer adsorption compared to the previous two types of HAP NPs. A combination of solid-state NMR (SSNMR) techniques including 13C and 15N CP-MAS, relaxation measurements and 13C−31P Rotational Echo DOuble Resonance (REDOR) is utilized to characterize the molecular structure and dynamics of Asp-HAP bionano interfaces with 13C- and 15N-enriched Asp. REDOR is used to determine 13C−31P internuclear distances, providing insight into the Asp binding geometry where stronger 13C−31P dipolar couplings correlate with binding affinity determined from Langmuir isotherms. The carboxyl sites are identified as the primary binding groups, facilitated by their interaction with surface calcium sites. The Asp chelation conformations revealed by SSNMR are further refined with molecular dynamics (MD) simulation where specific models strongly agree between the SSNMR and MD models for the various surfaces.more » « less
-
Abstract Many plants, especially trees, emit isoprene in a highly light‐ and temperature‐dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure ofArabidopsisleaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although manyArabidopsisproteins were found to have slightly higher binding affinities than a reference set ofHomo sapiensproteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.more » « less
An official website of the United States government

