Abstract Gene duplication is a source of evolutionary novelty. DNA methylation may play a role in the evolution of duplicate genes (paralogs) through its association with gene expression. While this relationship has been examined to varying extents in a few individual species, the generalizability of these results at either a broad phylogenetic scale with species of differing duplication histories or across a population remains unknown. We applied a comparative epigenomic approach to 43 angiosperm species across the phylogeny and a population of 928 Arabidopsis (Arabidopsis thaliana) accessions, examining the association of DNA methylation with paralog evolution. Genic DNA methylation was differentially associated with duplication type, the age of duplication, sequence evolution, and gene expression. Whole-genome duplicates were typically enriched for CG-only gene body methylated or unmethylated genes, while single-gene duplications were typically enriched for non-CG methylated or unmethylated genes. Non-CG methylation, in particular, was a characteristic of more recent single-gene duplicates. Core angiosperm gene families were differentiated into those which preferentially retain paralogs and “duplication-resistant” families, which convergently reverted to singletons following duplication. Duplication-resistant families that still have paralogous copies were, uncharacteristically for core angiosperm genes, enriched for non-CG methylation. Non-CG methylated paralogs had higher rates of sequence evolution, higher frequency of presence–absence variation, and more limited expression. This suggests that silencing by non-CG methylation may be important to maintaining dosage following duplication and be a precursor to fractionation. Our results indicate that genic methylation marks differing evolutionary trajectories and fates between paralogous genes and have a role in maintaining dosage following duplication.
more »
« less
Gene duplication, shifting selection, and dosage balance of silicon transporter proteins in marine and freshwater diatoms
Abstract Numerous factors shape the evolution of protein-coding genes, including shifts in the strength or type of selection following gene duplications or changes in the environment. Diatoms and other silicifying organisms use a family of silicon transporters (SITs) to import dissolved silicon from the environment. Freshwaters contain higher silicon levels than oceans, and marine diatoms have more efficient uptake kinetics and less silicon in their cell walls, making them better competitors for a scarce resource. We compiled SITs from 37 diatom genomes to characterize shifts in selection following gene duplications and marine–freshwater transitions. A deep gene duplication, which coincided with a whole-genome duplication, gave rise to two gene lineages. One of them (SIT1–2) is present in multiple copies in most species and is known to actively import silicon. These SITs have evolved under strong purifying selection that was relaxed in freshwater taxa. Episodic diversifying selection was detected but not associated with gene duplications or habitat shifts. In contrast, genes in the second SIT lineage (SIT3) were present in just half the species, the result of multiple losses. Despite conservation of SIT3 in some lineages for the past 90–100 million years, repeated losses, relaxed selection, and low expression highlighted the dispensability of SIT3, consistent with a model of deterioration and eventual loss due to relaxed selection on SIT3 expression. The extensive but relatively balanced history of duplications and losses, together with paralog-specific expression patterns, suggest diatoms continuously balance gene dosage and expression dynamics to optimize silicon transport across major environmental gradients.
more »
« less
- Award ID(s):
- 1651087
- PAR ID:
- 10526142
- Editor(s):
- Piganeau, Gwenael
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Genome Biology and Evolution
- Volume:
- 15
- Issue:
- 12
- ISSN:
- 1759-6653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The suborder Notothenioidae is comprised of Antarctic fishes, several of which have lost their ability to rapidly upregulate heat shock proteins in response to thermal stress, instead adopting a pattern of expression resembling constitutive genes. Given the cold-denaturing effect that sub-zero waters have on proteins, evolution in the Southern Ocean has likely selected for increased expression of molecular chaperones. These selective pressures may have also enabled retention of gene duplicates, bolstering quantitative output of cytosolic heat shock proteins (HSPs). Given that newly duplicated genes are under more relaxed selection, it is plausible that gene duplication enabled altered regulation of such highly conserved genes. To test for evidence of gene duplication, copy number of various isoforms within major heat shock gene families were characterized via qPCR and compared between the Antarctic notothen, Trematomus bernacchii, which lost the inducible heat shock response, and the non-Antarctic notothen, Notothenia angustata, which maintains an inducible heat shock response. The results indicate duplication of isoforms within the hsp70 and hsp40 super families have occurred in the genome of T. bernacchii. The findings suggest gene duplications may have been critical in maintaining protein folding efficiency in the sub-zero waters and provided an evolutionary mechanism of alternative regulation of these conserved gene families.more » « less
-
Abstract Freshwater sponges (Spongillida) are a unique lineage of demosponges that secondarily colonized lakes and rivers and are now found ubiquitously in these ecosystems. They developed specific adaptations to freshwater systems, including the ability to survive extreme thermal ranges, long-lasting dessication, anoxia, and resistance to a variety of pollutants. Although spongillids have colonized all freshwater systems, the family Lubomirskiidae is endemic to Lake Baikal and plays a range of key roles in this ecosystem. Our work compares the genomic content and microbiome of individuals of three species of the Lubomirskiidae, providing hypotheses for how molecular evolution has allowed them to adapt to their unique environments. We have sequenced deep (>92% of the metazoan “Benchmarking Universal Single-Copy Orthologs” [BUSCO] set) transcriptomes from three species of Lubomirskiidae and a draft genome resource for Lubomirskia baikalensis. We note Baikal sponges contain unicellular algal and bacterial symbionts, as well as the dinoflagellate Gyrodinium. We investigated molecular evolution, gene duplication, and novelty in freshwater sponges compared with marine lineages. Sixty one orthogroups have consilient evidence of positive selection. Transporters (e.g., zinc transporter-2), transcription factors (aristaless-related homeobox), and structural proteins (e.g. actin-3), alongside other genes, are under strong evolutionary pressure in freshwater, with duplication driving novelty across the Spongillida, but especially in the Lubomirskiidae. This addition to knowledge of freshwater sponge genetics provides a range of tools for understanding the molecular biology and, in the future, the ecology (e.g., colonization and migration patterns) of these key species.more » « less
-
Abstract Habitat transitions have shaped the evolutionary trajectory of many clades. Sea catfishes (Ariidae) have repeatedly undergone ecological transitions, including colonizing freshwaters from marine environments, leading to an adaptive radiation in Australia and New Guinea alongside non-radiating freshwater lineages elsewhere. Here, we generate and analyze one long-read reference genome and 66 short-read whole genome assemblies, in conjunction with genomic data for 54 additional species. We investigate how three major ecological transitions have shaped genomic variation among ariids over their ~ 50 million-year evolutionary history. Our results show that relatively younger freshwater lineages exhibit a higher incidence of positive selection than their more ancient marine counterparts. They also display a larger disparity in body shapes, a trend that correlates with a heightened occurrence of positive selection on genes associated with body size and elongation. Although positive selection in the Australia and New Guinea radiation does not stand out compared to non-radiating lineages overall, selection across the prolactin gene family during the marine-to-freshwater transition suggests that strong osmoregulatory adaptations may have facilitated their colonization and radiation. Our findings underscore the significant role of selection in shaping the genome and organismal traits in response to habitat shifts across macroevolutionary scales.more » « less
-
Abstract Despite the obstacles facing marine colonists, most lineages of aquatic organisms have colonized and diversified in freshwaters repeatedly. These transitions can trigger rapid morphological or physiological change and, on longer timescales, lead to increased rates of speciation and extinction. Diatoms are a lineage of ancestrally marine microalgae that have diversified throughout freshwater habitats worldwide. We generated a phylogenomic data set of genomes and transcriptomes for 59 diatom taxa to resolve freshwater transitions in one lineage, the Thalassiosirales. Although most parts of the species tree were consistently resolved with strong support, we had difficulties resolving a Paleocene radiation, which affected the placement of one freshwater lineage. This and other parts of the tree were characterized by high levels of gene tree discordance caused by incomplete lineage sorting and low phylogenetic signal. Despite differences in species trees inferred from concatenation versus summary methods and codons versus amino acids, traditional methods of ancestral state reconstruction supported six transitions into freshwaters, two of which led to subsequent species diversification. Evidence from gene trees, protein alignments, and diatom life history together suggest that habitat transitions were largely the product of homoplasy rather than hemiplasy, a condition where transitions occur on branches in gene trees not shared with the species tree. Nevertheless, we identified a set of putatively hemiplasious genes, many of which have been associated with shifts to low salinity, indicating that hemiplasy played a small but potentially important role in freshwater adaptation. Accounting for differences in evolutionary outcomes, in which some taxa became locked into freshwaters while others were able to return to the ocean or become salinity generalists, might help further distinguish different sources of adaptive mutation in freshwater diatoms. [hemiplasy; homoplasy; phylogenomics; salinity, Thalassiosirales.]more » « less
An official website of the United States government

