skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Palladium and Iron Cocatalyzed Aerobic Alkene Aminoboration
Aminoboration of simple alkenes with nitrogen nucleophiles remains an unsolved problem in synthetic chemistry; this transformation can be catalyzed by palladium via aminopalladation followed by transmetalation with a diboron reagent. However, this catalytic process faces inherent challenges with instability of the alkylpalladium(II) intermediate toward β-hydride elimination. Herein, we report a palladium/iron cocatalyzed aminoboration, which enables this transformation. We demonstrate these conditions on a variety of alkenes and norbornenes with an array of common nitrogen nucleophiles. In the developed strategy, the iron cocatalyst is crucial to achieving the desired reactivity by serving as a halophilic Lewis acid to release the transmetalation-active cationic alkylpalladium intermediate. Furthermore, it serves as a redox shuttle in the regeneration of the Pd(II) catalyst by reactivation of nanoparticulate palladium.  more » « less
Award ID(s):
2155133
PAR ID:
10526522
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
145
Issue:
34
ISSN:
0002-7863
Page Range / eLocation ID:
18939 to 18947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The transition‐metal‐catalyzed Suzuki‐Miyaura cross‐coupling (SMC) reaction of organoboron nucleophiles with aryl (pseudo)halide electrophiles is a reliable method for carbon‐carbon bond formation. This reaction generally requires the use of an exogenous base to promote transmetalation process, which limits the substrate scope of the reaction due to undesired protodeboronation and functional group incompatibilities. Here, we established a base‐free SMC reaction via a conceptually different electrophilic substitution transmetalation (EST). This transformation is applicable to a wide range of base‐sensitive and sterically hindered organoborons. Key to this advance is the formation of a stable cationic palladium(II) or nickel(II) intermediate via experimental and theoretical investigations. In a broader context, this research further expands the synthetic boundary of cross‐coupling chemistry. 
    more » « less
  2. Aliphatic allylic amines are found in a great variety of complex and biorelevant molecules. The direct allylic C–H amination of alkenes serves as the most straightforward method toward these motifs. However, use of widely available internal alkenes with aliphatic amines in this transformation remains a synthetic challenge. In particular, palladium catalysis faces the twin challenges of inefficient coordination of Pd(II) to internal alkenes but excessively tight and therefore inhibitory coordination of Pd(II) by basic aliphatic amines. We report a general solution to these problems. The developed protocol, in contrast to a classical Pd(II/0) scenario, operates through a blue light–induced Pd(0/I/II) manifold with mild aryl bromide oxidant. This open-shell approach also enables enantio- and diastereoselective allylic C–H amination. 
    more » « less
  3. An iron-catalyzed regioselective dicarbofunctionalization of electron-rich alkenes is described. In particular, aryl- and alkyl vinyl ethers are used as effective linchpins to couple alkyl or (fluoro)alkyl halides and sp 2 -hybridized Grignard nucleophiles. Preliminary results demonstrate the ability to engage thioethers as linchpins and control enantioselectivity in these transformations, an area which is largely unexplored in iron-catalyzed three-component cross-coupling reactions. 
    more » « less
  4. Abstract The palladium-catalyzed enantioselective allylic substitution by carbon or nitrogen nucleophiles is a key transformation that is particularly useful for the synthesis of bioactive compounds. Unfortunately, the selection of a suitable ligand/substrate combination often requires significant screening effort. Here, we show that a transition state force field (TSFF) derived by the quantum-guided molecular mechanics (Q2MM) method can be used to rapidly screen ligand/substrate combinations. Testing of this method on 77 literature reactions revealed several cases where the computationally predicted major enantiomer differed from the one reported. Interestingly, experimental follow-up led to a reassignment of the experimentally observed configuration. This result demonstrates the power of mechanistically based methods to predict and, where necessary, correct the stereochemical outcome. 
    more » « less
  5. Abstract A new [4+2] cycloaddition of allenyne‐alkyne is developed. The reaction is believed to proceed with forming an α,3‐dehydrotoluene intermediate. This species behaves as a σπ‐diradical to react with a hydrogen atom donor, whereas it displays a zwitterionic reactivity toward weak nucleophiles. The efficiency of trapping α,3‐dehydrotoluene depends not only on its substituents but also the trapping agents. Notable features of the reaction are the activating role of the extra alkyne of the 1,3‐diyne that reacts with the allenyne moiety and the opposite mode of trapping with oxygen and nitrogen nucleophiles. Oxygen nucleophiles result in the oxygen‐end incorporation at the benzylic position of the α,3‐dehydrotoluene, whereas with amine nucleophiles the nitrogen‐end is incorporated into the aromatic core. Relying on the allenyne‐alkyne cycloaddition as an enabling strategy, a concise total synthesis of phosphodiesterase‐4 inhibitory selaginpulvilin A is realized. 
    more » « less