LiDAR (Light Detection And Ranging) is an indispensable sensor for precise long- and wide-range 3D sensing, which directly benefited the recent rapid deployment of autonomous driving (AD). Meanwhile, such a safety-critical application strongly motivates its security research. A recent line of research demonstrates that one can manipulate the LiDAR point cloud and fool object detection by firing malicious lasers against LiDAR. However, these efforts evaluate only a specific LiDAR (VLP-16) and do not consider the state-of-the-art defense mechanisms in the recent LiDARs, so-called next-generation LiDARs. In this WIP work, we report our recent progress in the security analysis of the next-generation LiDARs. We identify a new type of LiDAR spoofing attack applicable to a much more general and recent set of LiDARs. We find that our attack can remove >72% of points in a 10×10 m2 area and can remove real vehicles in the physical world. We also discuss our future plans.
more »
« less
Parallel indirect time-of-flight ranging using on-chip dual-frequency combs
The significant advancements in autonomous vehicle applications demand detection solutions capable of swiftly recognizing and classifying objects amidst rapidly changing and low-visibility conditions. Light detection and ranging (LiDAR) has emerged as a robust solution, overcoming challenges associated with camera imaging, particularly in adverse weather conditions or low illumination. Rapid object recognition is crucial in dynamic environments, but the speed of conventional LiDARs is often constrained by the 2D scanning of the laser beam across the entire scene. In this study, we introduce a parallelization approach for the indirect time-of-flight (iToF) ranging technique. This method enables efficient and high-speed formation of 1D clouds, offering the potential to have extended range capabilities without being constrained by the laser coherence length. The application potential spans mid-range autonomous vehicles ranging to high-resolution imaging. It utilizes dual-frequency combs with slightly different repetition rates. The method leverages the topology of the target object to influence the phase of the beating signal between the comb lines in the RF domain. This approach enables parallel ranging in one direction, confining the scanning process to a single dimension, and offers the potential for high-speed LiDAR systems. A tri-comb approach will be discussed that can provide an extended unambiguous range without compromising the resolution due to the range–resolution trade-off in iToF techniques. The study starts by explaining the technique for parallel detection of distance and velocity. It then presents a theoretical estimation of phase noise for dual combs, followed by an analysis of distance and velocity detection limits, illustrating their maximum and minimum extents. Finally, a study on the mutual interference conditions between two similar LiDAR systems is presented, demonstrating the feasibility of designing simultaneously operating LiDARs to avoid mutual interference.
more »
« less
- Award ID(s):
- 2323752
- PAR ID:
- 10526628
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 63
- Issue:
- 22
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. 5917
- Size(s):
- Article No. 5917
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in spectroscopy applications. In the past decade, the state-of-the-art systems have reached a point where the signal-to-noise ratio per unit acquisition time is fundamentally limited by shot noise from vacuum fluctuations. To address the issue, we propose an entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-to-noise ratio performance. To analyze the performance of real systems, we develop a quantum model of dual-comb spectroscopy that takes practical noises into consideration. Based on this model, we propose quantum combs with side-band entanglement around each comb lines to suppress the shot noise in heterodyne detection. Our results show significant quantum advantages in the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications. Furthermore, the quantum comb can be engineered using nonlinear optics and promises near-term experimentation.more » « less
-
Abstract Optical frequency combs, featuring evenly spaced spectral lines, have been extensively studied and applied to metrology, signal processing, and sensing. Recently, frequency comb generation has been also extended to MHz frequencies by harnessing nonlinearities in microelectromechanical membranes. However, the generation of frequency combs at radio frequencies (RF) has been less explored, together with their potential application in wireless technologies. In this work, we demonstrate an RF system able to wirelessly and passively generate frequency combs. This circuit, which we name quasi-harmonic tag (qHT), offers a battery-free solution for far-field ranging of unmanned vehicles (UVs) in GPS-denied settings, and it enables a strong immunity to multipath interference, providing better accuracy than other RF approaches to far-field ranging. Here, we discuss the principle of operation, design, implementation, and performance of qHTs used to remotely measure the azimuthal distance of a UV flying in an uncontrolled electromagnetic environment. We show that qHTs can wirelessly generate frequency combs with μWatt-levels of incident power by leveraging the nonlinear interaction between an RF parametric oscillator and a high quality factor piezoelectric microacoustic resonator. Our technique for frequency comb generation opens new avenues for a wide range of RF applications beyond ranging, including timing, computing and sensing.more » « less
-
An approach is described for spectrally parallel hyperspectral mid-infrared imaging with spatial resolution dictated by fluorescence imaging. Quantum cascade laser (QCL)-based dual-comb mid-infrared spectroscopy enables the acquisition of infrared spectra at high speed (<1 millisecond) through the generation of optical beat patterns and radio-frequency detection. The high-speed nature of the spectral acquisition is shown to support spectral mapping in microscopy measurements. Direct detection of the transmitted infrared beam yields high signal-to-noise spectral information, but long infrared wavelengths impose low diffraction-limited spatial resolution. The use of fluorescence detected photothermal infrared (F-PTIR) imaging provides high spatial resolution tied directly to the integrated IR absorption. Computational imaging using a multi-agent consensus equilibrium (MACE) approach combines the high spatial resolution of F-PTIR and the high spectral information of dual-comb infrared transmission in a single optimized equilibrium hyperspectral data cube.more » « less
-
Abstract Faraday rotation spectroscopy and absorption spectroscopy are performed simultaneously in a dual comb spectroscopy arrangement with quantum cascade laser combs operating at ∼8μm. The system uses free-running laser combs that provide ∼70 cm−1spectral coverage and ∼2 MHz spectral resolution. Detection of NO2in an equilibrium mixture with N2O4and N2O is used to demonstrate selective measurements of paramagnetic NO2in the presence of spectrally interfering diamagnetic species.more » « less
An official website of the United States government
